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2. Executive Summary

DASH Hardware: The 16 processor prototype of DASH is now very close to completion.
All the hardware is either in fabrication or being debugging. We are shooting for an
operational prototype this Fall.

DASH Operating System: The operating system modifications have been keeping pace
with the hardware. All essential modifications necessary to bring up the operating system
on the DASH prototype have been completed. We have already successfully booted the
modified OS on a single cluster while using the new locks and interrupts provided by the
directory-controller board.

Parallel Simulation and Tracing Facility: We have continued the development and use
of our software tracing and simulation system, Tango. We have extended Tango to allow
multiple applications to be run at the same time with a user supplied scheduling strategy.
We have studied the performance gains of weak memory consistency models over
sequential consistency for scalable multiprocessors. Another study has evaluated the
benefits of software-controlled prefetching in multiprocessors. For the scientific
applications we studied, we found that prefetching was easy to add and it increased the
performance by 200-300%.

Compiler Managed Parallelism: We have developed new algerithms for two basic
parallelizing compiler modules: the data dependence analyzer and the loop transformer.
While current methods sacrifice potential parallelism to improve compiler efficiency, we
demonstrate that it is possible to test data dependence exactly and efficiently.

Data Management: We have discovered that the behavior of caches on blocked
numerical code is quite unusual and must be accounted for in the design of such
algorithms. Especially for direct-mapped caches, the conventional wisdom of trying to
use the entire cache, or even a fixed fraction of the cache, is incorrect. The cache
performance can be sigaificantly improved by choosing the block size according to the
matrix size or by copying data to contiguous memory locations.

Sparse Matrix Factorization: We have been exploring new ways to efficiently solve
large sparse systems of equations. Using the concept of supernodes, we have developed
techniques that make very effective use of caches. On an 8-processor Silicon Graphics
system, SGI 4]>-380, we obtain over 40 MFLOPS of sustained performance.

Parallel Languages: To compensate for the weakness of parallelizing compilers in
extracting coarse-grain parallelism, we have developed a parallel programming language
called Jade. Starting with a sequential program, a programmer simply augments those
sections of code to be parallelized with side effect information. The Jade system finds
not just static parallelism but also parallelism that can only be derived at run time. Using
Jade can significantly reduce the time and effort required to develop a parallel version of
an imperative application with serial semantics. We have implemented a prototype Jade
system and also several applications using this language.

Protocol Verification: We are applying protocol verification techniques to the cache

coherence protocol for DASH. Although this project is in the initial stages, we have

completed a reduced description of the protocol which has been sufficient to find some

cases that were not covered in the documentation of the protocol. We are continuing to

= hance the DASH description and specification, with the goal of either proving it comrect
- accelerating the debugging of the DASH prototype.




VLSI CAD Tools: We have also continued our work in tool support for VLSI design.
Our recent work has been in three areas: incremental simulation, power supply noise
analysis, and BICMOS simulation. In the area of incremental simulation, we have
completed and begun distributing IRSIM, an incremental switch-level simulator. This
tool is a variant of RSIM, that allows the user to change the netlist after a simulation has
been performed and quickly find the effects of the change. We are continuing work on
Bisim which started out as an attempt to create an RSIM-like tool for BICMOS circuits.

We are finishing up our work on Ariel, an analysis tool that allows the designer to
calculate the noise on the power supply lines in the integrated circuit. This program first
extracts the resistance of the supply lines, then estimates the supply current and then uses
this information to find the voltage drops.

Self-Timed Circuits: We worked on a number of VLSI chips this period. In the self-
timed area, we designed, fabbed and tested a new self-timed divider, that is able to find a
new quotient bit every 3ns. The key point of this design is that the self-timed control
does not add any delay to the circuit, the delay is completely set by the datapath. We call
this new style Zero-Overhead Self-Timed Design.

High-Speed Memory: We have also been working on improving our designs of high-
speed BiCMOS memories. Previously we demonstrated a 64K 4ns SRAM. [suring this
period, we have looked at ways to make the design more robust, to see if a commercial
memory would be possible. The results look very promising, and we are now looking at
other ways on improving both the speed and noise-margins in the design.




3. Technical Progress

3.1 Parallel Processor Architecture
Our primary focus over the last 6 months has been the construction of the DASH

prototype. The prototype is now close to completion and we hope to have working
hardware and software within the next few weeks.

Our first subtask was making the modifications necessary to the processor, memory, and
1/O boards of the Silicon Graphics (SGI) 4D/340 systems used in DASH. For example,
we needed to modify the processor boards and the I/O board (which has the arbiter) to
force the processor off the bus when it makes a remote-memory request and eventually be
able to respond to the processor when data has been retrieved. The memory boards
needed to be modified to recognize non-zero base addresses, plus a host of other changes.
All such modifications have now been completed and tested.

Our second subtask was to complete the design of the directory board and to build it.
Since our last report, we have split the single directory board into two boards---the
directory-controller board and the reply-controller board. In addition to accommodating
all the main logic, this allowed us to put a powerful performance monitor on each cluster.
The directory-controller board now contains the directory memory and the associated
state machines, the performance monitor, and one-half of the network interface. The
reply-controller board contains the reply controller (handles replies to this cluster's
remote requests), the pseudo-CPU (services requests from remote CPUs), the remote-
access cache, and the other half of the network interface. The design of both boards is
now complete. In fact, the directory-controller board has already been fabricated. We
have inserted the board into a modified SGI system and have tested much of its
functionality. The board seems to be working according to the specifications. The reply-
controller board was sent for fabrication on September 21 and should be back on October

5. Within a few days from that we will be ready to debug a multiple cluster DASH
system.

Before the boards were sent for fabrication, considerable effort was spent on ensuring
correctness through simulation. We built a detailed functional simulator of DASH that
closely modeled the DASH hardware. Several parallel applications were run on this
simulator and millions of clock cycles were simulated. We also ran the DASH protocol
verifier, a psucdo-random tester that exercises the coherence protocol, to ensure that a
large percentage of possible protocol interactions were tested. About 200K vectors,

directly generated from this functional simulator, were used to do gate-level simulations
using the VALID CAE software.

DASH is designed to be a general-purpose multiprocessor, and not as an attached
machine to some host. As such, it will support a full fledged operating system. In close
cooperation with Silicon Graphics, we are modifying the existing operating system on the
4D/340 (IRIX, a variation of UNIX System V) to work on DASH. Because of the
hierarchical nature of the DASH multiprocessor, as compared to the flat structure of the
4D/340, several major changes are required tc the kernel. At this point, the boot up
sequence for the multiple cluster DASH has been defined. Most kernel data structures
have been adapted for the DASH architecture, and special tools have been developed in
order to automate the process of configuring the kernel for different cluster
configurations. The kernel locking system, the user locking system and the user MP
library are currently using the DASH hardware locks (with special added code to cover
the absence of the RC: hoard). The capability of attaching processes or sets of threads to 2
given processor has been extended to allow the attachment to clusters. Inter-cpu
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interrupts are currently being generated through the DASH hardware interrupt generation
facility. The operating system is now at a stage where it is ready to be run and debugged
on the multiple cluster DASH when it is powered up in early October.

In addition to the work being done on the prototype, we have been doing a number of
other architectural studies. One important topic is the performance benefits from weak
memory consistency models. Although, a number of models have been proposed in the
literature, no detailed performance results have been reported. We have done detailed
simulation studies to characterize the benefits [7]. Our results show that the sequentially
consistent models have significantly worse performance than the less strict models such
as processor consistency and release consistency. For the four benchmark applications
studied, the less strict models were shown to improve the processor utilization by as
much as 10-50% over a sequentially consistent implementation. The gains are expected
to increase with larger memory latencies that will be seen in future machines. We further
show that most of the benefits achieved by the less strict models are due to buffering of
writes and allowing reads to bypass pending writes. The ability to pipeline writes is not as
critical to performance, especially when reasonably deep write buffers were used. The
above results were shown for processors with blocking loads. We are currently doing
studies for processors with non-blocking loads, where the benefits are expected to
increase.

In another study [19], we evaluated the effectiveness of non-binding software-controlled
prefetching (as proposed in the Stanford DASH multiprocessor) in helping tolerate large
memory latencies observed in scalable multiprocessors. In adding prefetching to
applications, we found both the non-binding and software-controlled aspects to be
essential to obtaining good performance benefits. Non-binding prefetching allowed us to
fetch data far in advance, even though there was a possibility that data may not be used or
that it may be modified before use. Software control allowed us to be selective in only
prefetching data that was likely to miss in the cache, thus reducing overhead. It also
allowed us to move prefetches earlier than would have been possible in hardware
schemes that use a limited lookahead window. Our results show that for applications
with regular data access patterns---we evaluated a particle-based simulator used in
aeronautics and an LU-decomposition application---prefetching can be very effective. It
was easy to augment the applications to do prefe*ching and it increased their performance
by 200-300% when we prefetched directly into the processor's cache. However, for
applications with complex data usage patterns, for example applications that make
extensive use of pointers and linked lists, prefetching was less successful. After much

effort, the performance of a distributed-time logic simulation application could be
increased only by 30%.

3.2 Modeling of Cache Coherence Directories

We have been studying various aspects of using directories to keep processor caches
consistent. These cache coherence directories record the caches that contain copies of
data, thereby allowing messages to be sent to only those caches that must receive them,
rather than broadcasting to every cache in the system. Directory-based coherence
schemes consume substantially less interconnection bandwidth than their broadcast-based
counterparts, and give the designer the flexibility of choosing any general point-to-point
network to interconnect the caches and main memory.

We have recently developed a model of reference behavior that allows us to predict the
performance of limited pointer directories under different program workloads. This will
allow us to properly evaluate several important trade-offs in the design and
implementation of these directories. For example, since the model predicts the number of
pointers needed under different circumstances, we can find the point of diminishing




returns where adding additional pointers to each entry yields negligible performance
gains. Another application of our model is evaluating the mechanisms used when the
available pointers in an entry are exhausted. Developing schemes with good overflow
behavior will allow us to cut the number of pointers required even further.

The modeling effort is ongoing and is moving forward rapidly. Several useful models
have been developed and verified using simulations driven by address traces of parallel
programs. We are now evaluating early results from the models. Though our
conclusions are necessarily still preliminary, it appears that limited pointers schemes can
substantially reduce the width of each directory entry for machines with hundreds or
thousands of processors.

4. Parallel Software

4.1 Compiler Research

The state of our compiler is that it has started to produce correct sequential code. It can
now generate correct, unoptimized code for several of the large programs from the
Perfect Club benchmarks. These Fortran programs ware first converted into C, then our
intermediate format, and finally into MIPS asse:nbly code. This shows that the basic
implementation is solid. The various adv~nced modules are now at different stages of
implementation; they include data dependence analysis, various scalar optimizations
including register allocation, flow graph optimizations for parallelism, the loop
transformer, array renaming, superscalar instruction scheduler, and the run-time system.

Our goals are not to just develop new compiler technology, but also evaluate them
experimentally.

We have developed 2 new approach to data dependence analysis. Data dependence
testing is the basic step in detecting loop level parallelism in Fortran-like languages.
Current methods sacrifice potential parallelism to improve compiler efficiency. We have
developed a small set of efficient algorithms, each one exact for special case inputs.
Combined, they are exact for almost all the cases we see in practice. We also introduce a
memorization technique to save results of previous tests, thus avoiding calling the data
dependence routines multiple times on the same input. Finally, we introduce new
pruning techniques, allowing us to also compute direction vectors more efficiently. We
applied the algorithm to the Perfect Club Benchmarks, a set of 13 scientific Fortran
programs ranging in size from 500 to 18,000 lines. We show both that our memorization
technique allows us to eliminate most tests and that the large majority of remaining tests
can be solved exactly using our simple algorithms. Coinbining these with a moderately
expensive backup test, we are able to be exact in every case at a very reasonable cost.

We have developed a theory that unifies many existing loop transformations, including
loop interchange or permutation, skewing, reversal, tiling, and combinations of these
elementary transformations [34]. This theory provides the foundation for solving an open
question in compilation for parallel machines: which loop transformations and, in what
order, should they be applied to achieve a particular goal, such as maximizing parallelism
or data locality. We have devcloped efficient algorithms for these problems that will find
the optimal solution in most cases.

To maximize locality, the algorithm can be divided into two steps. The first step of loop
transformations and blocking can be performed without deciding on the block size of the
final code. The block sizes can then be chosen after the loops have bheen transformed
While it is well known that blocking numerical code is an important optimization to




increase the performance of memory hierarchy in general, the behavior of caches on
blocked code is not known. The conventional wisdom is to choose the block sizes that
will use some fixed fraction of the cache. Our experiment [17] suggests otherwise. We
have obtained a significant set of data on the performance of caches for blocked code and
evaluated several optimizations for it. The data is obtained by a theoretical model of data
conflicts in the cache, which is validaied by substantial amounts of simulaton. We show
that: the performance is extremely sensitive to the stride of data accesses. To minimize
the expected number of cache misses, the code should attempt to use only a small
percentage of the cache within each block. Increasing the block size to use more of the
cache may severely degrade the performance of the machine. Using different block sizes
for different matrices can improve the miss rates and reduce the variance in performance
for different problem sizes. Finally, whenever possible, it is beneficial to copy non-
contiguous data into consecutive locations.

4.2 Solving Sparse Matrix Problems Efficiently

We are currently looking at the problem of efficiently solving large sparse systems of
equations on hierarchical memory uni- and multi-processors [20, 21, 22, 23]. This is an
important problem; the solution of such systems is the bottleneck in a wide variety of
domains, including linear programming, device simulation, and computational fluid
dynamics. Hierarchical memory multiprocessors offer the potential to solve such
problems both extremely quick and cost-effective.

The particular method we have been investigating for solving sparse systems is Cholesky
factorization. The main focus of our research has been on the use of blocking techniques
to improve the performance of sparse Cholesky factorization. Blocking has been
successfully exploited by a number of researchers to reduce cache miss-rates, and thus
improve performance, for dense linear algebra algorithms. The LAPACK dense linear
algebra package, for example, makes extensive use of blocking techniques. Blocking can
briefly be described as a reordering of the steps of an algorithm to increase data locality.
A block of data that fits in a fast level of the memory hierarchy is loaded into this fast
memory and reused many times before another block is loaded. The blocking done for
dense linear algebra algorithms relies heavily on the extremely regular structure of a

dense matrix computation. Sparse problems, in general, lack this regularity and thus are
less amenable to blocking.

Blocking is made possible in sparse Cholesky factorization by the presence of large sets
of columns in the factor matrix, called supernodes, that have nearly identical non-zero
structures. Originally examined in the context of vector supercomputers, these
supernodes dramatically increase the regularity of the sparse factorization computation.
For vector supercomputers, this increase results in increased vectorization. In the context
of hierarchical memory machines, we have used supernodes to make effective blocking
possible. The result is substantially higher performance.

A blocked approach to sparse Cholesky factorization has a number of implications for
parallel sparse factorization. The primary implication is that it greatly increases the task
grain size, making distribution of work among the processors more difficult. Through
heuristic partitioning of tasks, however, a reasonable balance can be reached between the
efficiency of a fully blocked code and the load balancing problems that would result from
too large a task grain size.

The major contributions of our work are as follows. We have performed an in-depth
study of the performance of the important sparse Cholesky factorization computation on a
class of machines that has so far not been considered in this context. Previous studics of
Cholesky factorization have considered its performance on either vector supercomputers




or scalar machines without cache memory, both of which present very different
considerations. We have also proposed a number of new blocking approaches for
reducing cache miss-rates. We have extended these techniques to hierarchical memory
multiprocessor systems, where blocking greatly complicates previous approaches to
parallel sparse factorization., We have proposed task partitioning techniques that
overcome the majority of these complications. The results of our studies have indicated
that blocking is an extremely effective technique for improving the performance of sparse
Cholesky factorization on hierarchical memory machines. We have obtained
computation rates of approximately 40 double-precision MFLOPS for a range of sparse
problems on an 8-processor Silicon Graphics 4D/380 multiprocessor, more than twice the
performance of unblocked approaches.

4.3 Language Research

Our language research is directed at complementing our compiler research. Although
parallelizing compilers have had some success with statically analyzable parallel loops,
they have been unable to automatically extract available task-level concurrency. The
reasons are that they are unable to automatically partition programs into a reasonable set
of coarse-grain tasks, and compilers' conservative dependence analysis generates spurious
data dependences, which unnecessarily serialize the computation. Programmers, on the
other hand, have the high level program knowledge necessary to exploit coarse-grain
concurrency. A programmer usually has little difficulty determining both a reasonable
task decomposition for a program and the precise side effect information which enables
the identification of concurrently executable tasks; the programmer's main problem is
getting the compiler and run-time system to understand and utilize this information. To
solve this problem, we have developed a programming language called Jade which
enables the exploitation of coarse-grain concurrency by allowing a programmer to easily
express this program knowledge [16].

Starting with a sequential program, a programmer simply augments those sections of
code to be parallelized with side effect information. The compiler and run-time system
use this side effect information to concurrently execute the program while respecting the
program's data dependence constraints.

Languages that contain explicit synchronization primitives can be viewed as parallel
"assembly"” programming languages. Programs written in these languages must be tuned
when ported to machines with different characteristics. Jade programs preserve the
programmer's high-level program knowledge, making it possible for the compiler and
run-time system, not the programmer, to exploit this knowledge when implementing
machine-dependent optimizations.

5. Uniprocessor Architecture

5.1 Super-Scalar Computers

For the past six months, we have concentrated effort on the hardware and sofiware
aspects of the new architecture that we proposed for superscalar processors. This
architecture tries to combine the advantages of dynamic and static scheduling techniques,

while minimizing the short-comings of each, to increase the performance of non-
numerical applications.

Early in this six-month period, we completed a paper [26] that describes the basics of the
new superscalar architecture and gives preliminary results on its ettectiveness. We call
our new architecture TORCH. This architecture introduces boosting as a technique to




allow the compiler to specify speculative execution. Boosting allows instructions to be
scheduled for execution before a conditional branch upon which the instructions are
dependent is scheduled. When an instruction is scheduled before a controiling conditional
branch, the sequential instruction becomes a boosted instruction which is signified by a
separate encoding. The hardware in TORCH takes care of maintaining the sequential
state by buffering the side effects and results of boosted instructions until the conditional
branch they are dependent upon is executed. Through the use of a trace-driven
simulation, we found that a straightforward implementation of TORCH (including both
simple hardware and a limited software instruction scheduling) competes with an
aggressive, dynamic-scheduled superscalar processor on non-numerical applications.

With this encouraging data, we proceeded to develop a more complete software
scheduling algorithm to exploit the instruction-level parallelism in the non-numerical
code. We plan to implement this algorithm in a real compiler that we are building here at
Stanford. The implementation is designed to be general enough to provide for
experimentation with a variety of hardware configurations. It will be able to generate
code for VLIW-like processors and for TORCH processors. The algorithm is similar to
trace scheduling in that it takes a more global look at the program during code generation
and scheduling in order to better utilize the instruction-level parallelism in a program,
The algorithm differs from the original definition of trace scheduling in that it uses more
control flow and control dependence information in order to limit the amount of code
expansion. We plan to evaluate the scheduling algorithm and different hardware
configurations through trace-driven simulation. As an aside, this evaluation system will
also be able to be configured to provide data on the effectiveness of software scheduling
in dynamically-scheduled superscalar processors.

6. Computer-Aided Design

6.1 Bisim

Work on Bisim is an attempt to construct a switch level simulator for digital circuits
whose capabilities bridge the space between traditional switch level simulators and circuit
simulators. Our principle goal is to create a switch-level simulator for MOS, ECL and
BiCMOS circuits. However, we believe this framework will also allow the user to make

a speed/accuracy tradeoff as well, allowing him to use different accuracies for different
parts of the circuit,

Circuit simulation and switch lcvel simulation have traditionally used disparate circuit
analysis techniques to achieve different goals. Circuit simulators [1] are constructed to
allow the accurate simulation of arbitrary circuits. They typically utilize nonlinear
transistor models and place few restrictions on the circuit topology. Numerical
integration is used to analyze the response of the circuit. Because the complexity of

these algorithms is O(n*3) (2], circuit simulators can only simulate relatively small
portions of an integrated circuit,

'n contrast, switch level simulators take advantage of the fact that the full generality of a
circuit simulator is unnecessary for predicting the first order behavior of most digital
MGCS circuits. In order to achieve increased simulation speed, switch level simulators 3]
decompose the circuit into small clusters which are analyzed individually, restrict the
topology of these clusters to transistor-capacitor trees, and restrict the transistor model to
that of a switched resistor. The Elmore delay [4] [5] [6] is then used to estimate
waveforms and delays. Analysis of this limited class of circuits can be very fast; up to
three orders of magnitude faster than circuit simulation. Because the computational




complexity of switch level algorithms is O(n) [6], these simulators can be applied to
entire integrated circuits. However, there are frequently small portions of the circuit
which must be simulated at the circuit level because the simplified switch models do not
allow the accurate prediction of their behavior.

Recently, rescarchers {7] have .»tended the Elmore Delay and moment techniques to; 1)
allow the computation of arbitrarily accurate waveform estimates through the use of
higher order moments, and 2) allow the analysis of arbitrary linear networks including
floating capacitors, inductors, and dependent sources in arbitrary topologies. Thus,
Asymptotic Waveform Estimation ¢xtends the techniques originally developed for switch
level simulation to the estimation of arbitrarily accurate responses of general linear
circuits, These techniques have (apparently) been combined with piecewise linear
transistor models to form a simulator, AWEsim [8], which possesses many of the
capabilities of a traditional circuit simulator.

Unfortunately, the tree/link analysis used by AWEsim is not as efficient as the RC tree
analysis techniques for the particular case of RC trees. The complexity of tree/link
analysis applied to RC trees is O(n2) [9] as opposed to O(n). This has lead to a recent
attempt {9] to accelerate the analysis through the use of Path Tracing. However, although
this work succeeds in reducing the number of multiplies to O(n), the number of additions
remains O(n?2). Furthermore, RC tree analysis has been generalized [10] to handle
multiple sources while retaining linear complexity. As described, the comiplexity of the
Path Tracing algorithm is O(n”3) if there is a resistor to ground at each node.

Our approach is to implement the theoretical ideas in Asymptotic Waveform Estimation
using an extension of the efficient tree analysis techniques developed for switch level
simulation. We will then embed this delay analysis technique into a switch level
framework to produce a simalator which can run almost as fast as switch level simulators
for the simple device models and topologies required for most of a digital MOS circuit,
but which can simultaneously simulate the more complex portions of the circuit at the
cost of increased run time.

We will first assume that a digital circuit can be partitioned into channel connected
“clusters” with identifiable inputs and outputs. It is assumed that the delay of a cluster
can be analyzed independently of all other clusters once the input waveforms are known.
The interaction between clusters is therefore restricted to take place via the inputs and

outputs. An event driven scheduling mechanism will be used to simulate these
interactions,

We initially restrict the topology of a cluster to be a trarsistor capacitor tree (possibly
with multiple sources) because efficient algorithms exist for the computation of its
moments. We will then show that the RC tree algorithms can be generalized to include
trees of general linear three terminal networks (where the third terminal of each network
is connected to ground). This allows us to utilize arbitrarily complex piecewise linzar
circuits to model transistors. The analysis of any particular circuit state still has

complexity O(n), although we will have to perform the analysis multiple times as regions
of linearity are crossed.

We will demonstrate the feasibility of the approach by creating the simulator and then
applying it to the simulation of various MOS, ECL, and BiCMOS digital circuits.
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6.2 IRSIM

Our research consists of creating a set of CAD tools for the verification of MOS digital
designs using incremental techniques. An incremental tool is characterized by a run time
proportional to the size of a design change rather than the size of the entire design.

We have concentrated on two programs: incremental simulator, and incremental netlist
extractor.

Our incremental simulator, IRSIM [1], attempts to decrease the time required to validate
a design following a set of modifications by the user. The simulator takes advantage of
the fact that, after an initial design, modifications have a low impact on the overall
correctness of a design. This means that much of the computation performed in
simulating a modified circuit are identical to those performed during previous

simulations. By saving and reusing previous results, substantial savings in computation
time can be achieved.

Until now, users were required to manually provide netlist-change commands to the
simulator; a time consuming and eiror prone operation. To remedy this situation, we are
adapting our layout editor, Magic [2], to perform incremental circuit extraction and
automatically generate the netlist-change commands required by the simulator. Magic is
a hierarchicat layout editor that allows nearly arbitrary overlap between cells. Its
extractor is hierarchical and supports a reduced notion of incrementalness by extracting
each cell independently of its context so that only modified cells and its ancestors need to
be re-extracted. Frior to simulation, the extracted (hierarchical) netlists need to be
converted into a flat netlist.

The successful use of incremental techniques on large designs hinges on the problem of

quickly wdentitying the modified portions of a design and communicating these changes
to the incremental simulator, The problem is not as obvious as it seems, since in a
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hierarchical design system, even simple changes to the layout, such as deleting a piece of
paint, may result in many changes to the underlying (flat) netlist. Conversely, large
changes to the geometry, such as moving a subcircuit from one place to another or
renaming a terminal, may result in no electrical changes to the netlist. The basic problem
is that each tool operates on a different description of the same circuit; hierarchical mask
geometry versus flat electrical netlists.

The required netlist changes could be identified by using Magic's extractor to extract the
modified cells and then flatten the design and compare the resulting netlist to the original.
Although this approach is possible, the overhead associated with flattening and

comparing large netlists can quickly become prohibitive as the size of the design
increases.

To solve this problem, our extractor uses a finer granularity than just cells: regions of
change. This is accomplished by recording all areas modified by the user during an
editing session and then re-extracting only these areas in their proper (flat) context for
both the updated and the original network. The two netlists are then electrically
compared against each other and the differences are reported to the simulator.

We have developed an extractor that is capable of extracting non-rectangular areas and
(possibly) incomplete circuits while still maintaining the correct hierarchical position of
each node or device in the flat netlist. Incomplete descriptions usually occur due to the

overlap of one or more unmodified cells within a changed area, or when the change only
consists of a device re-size.

The extracted netlist is represented as a graph where nodes and devices are represented as
graph vertices, and the graph edges correspond to connectiens between nodes and
devices. Representing netlists as graphs reduces the problem of comparing them to the
well-known problem of graph isomorphism between 2 graphs [3-5]. Although the
general problem is known to be NP-complete, for circuit (near planar) graphs several
algorithms have been proposed to check for isomorphism, However, most of these
algorithms either simply indicate whether the 2 graphs are isomorphic or just indicate the
elements that aren’t equivalent [6-9]. Our problem calls for finding the isomorphism
function (the transformations needed to convert one graph into the other).

The netlist comparator is based on a graph isomorphism approach that uses graph-
invariants but in addition uses the information available to circuit graphs such as
transistor type, terminal connection (i.e. source or gate), and connections to
corresponding nodes. These nodes are found by observing that any connection to a node
outside a changed area must be the same in both netlists. These equivalent nodes provide
the algorithm with a good starting point. The algorithm's goal is then to keep partitioning
the 2 graphs until each vertex is uniquely identifiable and then determining whether that
vertex has its counterpart in the other graph. Vertices (devices/nodes) found only in the
current graph will be added, those appearing only in the old graph will be deleted.

In addition, in order to keep differences from propagating throughout the graph,
differences are "fixed" as soon as they are identified. For example, a transistor whose
gate and drain are connected to the same nodes in both graphs is not deleted but rather,
the differing terminal is connected to the new corresponding node. This keeps the

algorithm from diverging in the presence of minor differences; a common problem with
netlist comparators,

Status:
» incremental extractor has been fully implemented and tested.
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« netlist comparator is under development.
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6.3 Verification Techniques

Under other funding, we are developing programs to help analyze protocols and
controllers that are used in hardware. Protocols and controllers are susceptible to subtle
design errors which are difficult to detect and diagnose by simulation or prototyping. Our
approach is to use state graphs both to model the actual behavior of implementations and
to specify their desired behavior. We are applying these techniques to the DASH cache

coherence protocol, in the hope that we can prove it correct or accelerate the debugging
of the systemn.

We are constructing software tools that can compare finite-state representations of
systems with specifications in the same form. The tool can derive the state graph from a
program or other operational description. The analysis can consist of checking for a
known interesting property (such as deadlock), making sure that a property (an invariant)
is true in all reachable states, or comparing for consistency with a second finite state
graph.

We are using two different approaches for exploring the state space. In the first approach,
the protocol is described using condition/action rules (similar to guarded commands).
The system state space is generated by simulating all firings for the rules, while saving all
states in a large hash table. This method has the advantage that it is easy to implement,
and the protocols are easy to describe. However, it suffers from the “state explosion
problem” --- the protocol can generate too many states to fit in memory.

Our second approach is to use a symbolic representation of the state space, such as a
boolean formula. The advantage of symbolic representations is that large sets often have
simple structure which can be captured in a small symbolic form. We are currently using
ordered binary decision diagrams, a4 widely-used representation of boolean functions tor
digital computer-aided design systems,

For a large system like DASH, the first step in verification is to reduce the description of
the system so that it is still likely to exhibit any errors, but has relatively few states. For
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example, our current description has three clusters, three memory lines, and one bit of
deta in each memory line. We now have a description which models all of the basic
memory transactions. Using the first method (hash table), this description generates morz
than 250,000 states. We have not yet discovered any bugs in the protocol, but we have
found several unexpected events that were not covered in the documentation.

Our future plans are to add more details to the protocol description for use in the
symbolic analyzer, and to check more complicated properties. For example, we will
compare our description of the DASH behavior with a state machine describing the
correct user-visible behavior (release consistency). We are also enhancing the tools,
especially their ability to handle larger state spaces. We will be modifying the DASH
description accordingly to take advantages of these improvements.

6.4 Partitioning of Functionai Models

We have studied a technique aiming at multiple-chip synthesis from a a single high-level
model in a Hardware Description Language (HDL). The partitioning of hardware
functions in a chip set is crucial in achieving an efficient implementation. While hardware
partitioning is dictated by the chip area limitations, it affects the performance of the
overall system. The purpose of this research is to investigate computer-aided partitioning
techniques that allow efficient implementation of hardware in multiple chips.

Unlike previous approaches, we use a partitioning technique performed at the functional
abstraction level, where the digital hardware being designed is represented by a
sequencing abstraction model capturing the operations to be performed and their
dependencies. Such a functional model is a common abstraction in high-level synthesis,
because it can be obtained by compiling a hardware description in a HDL and it forms a
convenient data-structure for synthesis algorithms.

Our partitioning approach is motivated by the following reasons. We assume that the
hardware being designed is synthesized from a high-level model in a HDL under a
maximum timing constraint on the overall hardware latency. By using high-level
synthesis techniques, the designer may try first to find a design configuration (i.e. binding
and schedule) that satisfies the chip area and latency constraints. When such a structure
cannot be found, then partitioning is used to overcome the area limitations while meeting
the timing requirements. It is important to note that partitioning may introduce timing
penalties, due to the inter-chip communication delays. For this reason, the designer will
choose a design configuration that satisfies the latency constraint as a starting point for
partitioning. Thus the search for a binding (that defines the hardware sharing) is done
prior to partitioning, and it benefits the partitioning method in providing a starting point
with an estimated area smaller than an unbound configuration.

This approach is important for hardware prototyping using programmable gate arrays
that have a limited capacity in terms of gate count. By using the same functional model
in a HDL, both a multi-chip prototype and the final implementation can be synthesized
automatically. Bounds on the latency of the prototype are important to insure that
accurate performance measures can be derived from it.

A muajor advantage of applying partitioning techniques at the functional abstraction level
is that scheduling techniques can be applied concurrently to partitioning. Therefore, the
overall latency of a partitioned structure can be readily evaluated, including the inter-chip
communication delays. In this way, area-performance trade-offs can be exploited.
Secondly, the functional model allows us to capture large hardware systems with fewer
vujects than atthe fogic netlist abstraction level. As a result, the partitioning algorithms
are more efficient for large scale designs.




We have formulated the high-level »artitioning problem as a constrained hypergraph
partitioning problem and researched the application to this model of the Kerighan-Lin
and the Simulated Annealing algorithms. A computer implementation in the program,
Vulcan, has shown that the technique is viable.

6.5 Simulation ‘
Initially, a simulator integration framework and algorithms were investigated. It was
followed by a first prototype to obtain a running multi-level mixed-mode simulator on

conventional workstations. The next step is to extend the prototype to run on parallel
machines.

The framework of interest was a distributed discrete-event simulation within a set of
communicating elements that exchange information through messages and distributed
time. We started with the well-known time-stamped algorithms (Chandy and Misra) to
reduce deadlock occurrence, increase concurrency, and reduce communication traffic
overhead. The concepts of "intervals", rather than time stamps, are used to represent the
period of time during which an event is valid in a simulation. With their use, there are
situations in which a simulated element will not block while it would have otherwise if
time-stamped messages were used. The use of labels on interval messages was introduced
to allow messages to detect loops and obtain event scheduling optimizations. An
interesting feature of intervals is that it allows simulation of future intervals in present

time. These results were presented in the SCS Multiconference on Modeling and
Simulation on Microcomputers [27].

A prototype to test and explore these concepts in a parallel multi-level mixed-mode
simulation is under development. The simulators being integrated consist of THOR, a
behavioral simulator for use with digital circuits at either the functional, register transfer
or gate level, IRSIM, a switch-level simulator for MOS circuits, and SPICE, a general-
purpose circuit-level simulator. This prototype is like a printed circuit board backplane
where existing simulator programs are plugged in to run in parallel either at the same
design level or at different design levels to function as a harmonic simulator. Basically, it
consists of a kernel to handle the interface to simulators and coordinate their computation.
It uses the concepts mentioned above for interval messages, and labeled messages within
loops. Also, it handles conversion between design levels as in the case of iogic signals
and circuit signals. In this case, it uses known solutions as a threshold function between
circuit to logic and a step/ramp function between logic to circuit.

A first prototype version was implemented and it is currently being tested. The goal is to
test and explore the concepts mentioned above and to obtain a running multi-level mixed-
mode simulation on conventional workstations. It consists of a modified version of the
simulators being integrated and a common kernel that handles their interfaces and
synchronization. This first prototype system is used for the verification of an adaptive
signal processing system at both the chip and ihe board levels, and for the design of a
complex CMOS Viterbi detection chip.

The second prototype version to be initiated will port this system to a multiprocessor
system. This task will require a change of a localized and relatively small portion of the
kernel that handles the communication between different instances of the simulators.




7. VLSI Design

7.1 Zero-Overhead Seif-Timed Circuits

We have been looking at methods of building highest performance self-timed circuits.
To accomplish this goal required finding a method to eliminate the control overhead that
is normally associated with a self-timed design. This overhead arises from the fact that
one usually needs to detect completion and then use this information to control the
circuit. For most self-timed designs this control path ends up in the critical path.

We have developed a method of designing circuit with zero-overhead, precalculating the
control information for each block. This method allows the control signals to enable a
block before valid data arise at its inputs. The cost of this technique is a slight increase in
hardware, since there needs to be enough stages between where the control signal is
generated and used, so that the control delay can be hidden. To test this technique we
designed and fabricated a 54bit self-timed divider. The chip used five stages connected
in a self-timed ring, and was fabricated in a 1.2u CMOS technology by MOSIS. The 7
mm?2 chip calculates a new quotient bit every 2.7ns at room temperature and 5V. Since
the ring is self-timed, it is easy to measure its performance -- on connects, the power and
simply measures the loop time.

7.2 BiCMOS SRAMS

The requirement of ECL-CMOS level conversion slows the access of traditional
BiCMOS static RAMS. The CMOS-storage, emitter-access (CSEA) memory cell
overcomes this limitation by placing a bipolar transistor into the memory cell itself. This
cell allows a read path consisting entirely of low (ECL-ish) voltage swings which may be
implemented using fairly standard ECL circuit techniques borrowed from bipolar static
RAMS. As an outgrowth of our work on a sub-4 ns, 64Kbit BICMOS static RAM [33],
we have identified two areas which merit additional attention. We have been looking into
techniques to reduce access-time penalties due to supply noise coupling into the bit line
sense circuits and the feasibility of the CSEA cell in embedded (wide access path) cache
memories for BICMOS microprocessors.

Traditional static RAM design avoid problems with power supply noise slowing sense
times by using fully-differential circuit techniques which can make the noise look
common-mode to the sensing circuitry. However, the CSEA cell only provides one bit
line for reading, so single-ended circuit techniques are used for sensing. These problems
are exacerbated by heavily data-dependent supply coupling into the bit lines; the base-
emitter capacitance of each emitter-follower forming the wired-or bit line is tightly
coupled to either the positive supply (Vcc) or the negative supply (Vee), depending on
the data stored in the cell. Note that this means the amount of charge dumped onto the bit
line is dependent on the data stored in the unselected cells on that bit line. This prevents
the use of a fully-differential CSEA cell (two followers and two bit lines) to make the
noise coupling common-mode. It also limits the use of replica techniques in the
reference-generating circuitry (as used in dynamic RAM design) because the replica
circuit needs to have the same values stored in its unselected cells in order to experience
the same coupling.

Our design senses the selected cell's value by comparing it to a reference voltage by
turning the bit line into the shared node of a large ECLL OR gate; the selected cell's
follower and a sense device with the reference tied to its base form a differential pair.
The presence or absence of current in this sense device is the signal read by the sense
amp. In order to save power and circuitry, this sense amp is shared between many bit
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lines; the current from a sense device is summed with that from other sense devices
(which should be zero if the associated bit line is unselected) at the emitter of a cascode-
connected bipolar device (in order to reduce the voltage swing on a highly-capacitive
node). A two-level network of these reduces the maximum nodal capacitance and hence
speeds access.

Our approach to the supply noise issues relies on the large bit line current densities that
the bipolar transistor in the memory cell allows. Simulations indicate that, worst case, we
should be able to withstand substantial supply bounce without losing more than a quarter
of our sense current. Design of the sense device's reference generator must take into
account that supply noise coupling onte this reference is dependent on the values stored
in all cells, since even unselected bit lines couple to this node through their sense devices'
base-emitter capacitance. Preventing this reference from ever bouncing more than a
selected bit line will avoid problems with excess/lost current due to reference bounce.
Supply coupling issues affect the design of the cascode reference as well; because
cascode trees without a selected bit line must not be allowed to generate substantial
currents when their emitter node bounces, the reference generator is designed to track the
emitter bounce of unselected trees. Finally, replica techniques are used to generate the
reference voltage for comparison with the sense amp output; a dummy bit line with
"average" coupling and half the normal selected current is fed into an equivalent cascode
network.

Work on using the CSEA cell for embedded memories continues. A significant question
is ‘whethcr there is an alternative to such high bit line currents (for noise immunity), since
this current will add up to very substantial power for very wide (hundreds of bits) access
paths.
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The Directory-Based Cache Coherence Protocol
for the DASH Multiprocessor

Daniel Lenoski, James Laudon, Kourosh Gharachorloo,
Anoop Gupta, and John Hennessy

Computer Systems Laboratory
Stanford University, CA 94305

Abstract

DASH 15 a scalable shared-memory multiprocessor currently
being developed at Stanford's Computer Systems Laboratory.
The archits e consists of powerful processing nodes, each
with a portion of the shared-memory, connected to a scalable
interconnection network. A key feature of DASH is its dis-
tributed directory-based cache coherence protocol. Unlike tra-
ditional snoopy coherence protocols, the DASH protoco! does
not rely on broadcasy; instead it uses point-to-point messages
sent between the processors and memories to keep caches con-
sistent. Furthermote, the DASH system does not contain any
single serialization or control point. While these features pro-
vide the basis for scalability, they also force a reevaluation of
many fundamental issues involved in the design of a proto-
col. These include the issues of correctness, performance and
protocol complexity. In this paper, we present the design of
the DASH coherence protocol and discuss how it addresses the
above issues. We also discuss our strategy for verifying the
correctness of the protocol and briefly compare our protocol to
the IEEE Scalable Coherent Interface protocol.

1 Introduction

The limizations of current uniprocessor speeds and the ability to
replicate low cost, high-performance processors and VLSI com-
ponents have provided the impetus for the design of multipro-
cessors which are capable of scaling to a large number of pro-
cessors. Two major paradigms for these multiprocessor archi-
tectures have developed, message-passing and shared-memory.
In a message-passing multiprocessor, each processor has a lo-
cal memory, which is only accessible to that processor. Inter-
processor communication occurs only through explicit message
passing. In a shared-memory multiprocessor, all memory is ac-
cessible to each processor. The shared-memory paradigm has
the advantage that the programmer is not burdsned with the
issues of data partitioning, and accessibility of data from all
processors simplifies the task of dynamic load distribution. The
primary advantage of the message passing systems is the ease
with which they scale to support a large number of proces-
sors. For shared-memory machines providing such scalability
has traditionally proved difficult to achieve.

We are currently building a prototype of a scalable shared-
memory multiprocessor. The system provides high processor
performance and scalability though the use of coherent caches
and a directory-based coherence protocol. The high-level or-
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Figure 1: General architecture of DASH,

ganization of the prototype, called DASH (Ditectory Architec-
ture for SHared memory) (17], is shown in Figure 1. The ar-
chitecture consists of a number of processing nodes connected
through a high-bandwidth low-latency interconnection network.
The physical memory in the machine is distributed among the
nodes of the multiprocessor, w..'1 all memory accessible to each
node. Each processing node, or cluster, consists of a small
number of high-performance processors with thei; individual
caches, a portion of the shared-memory, a common cache for
pending remote accesses, and a directory controller interfacing
the cluster to the network. A bus-based snoopy scheme is used
to keep caches coherent within a cluster, while inter-node cache
consistency is maintained using a distributed directory-based
coherence protocol.

The concept of directory-based cache coherence was first pro-
posed by Tang [20] and Censier and Feautrier (6). Subsequently,
it has been been investigated by others (|1],(2) and |23}). Build-
ing on this carlier work, we have developed a new directory-
based cache-coherence protocol which works with distributed
directories and the hierarchical cluster configuration of DASH.
The protocol also integrates support for efficient synchroniza-
tion operations using the directory. Furthermore, in designing
the machine we have addressed many of the issues left unre-
solved by earlier work.

In DASH, cach processing node has a ditectory memory cor-
responding 10 its portion of the shared physical memory. For
tach memory block, the directory memory stores the identities




of all remote nodes caching that block. Using the directory
memory, & node writing a location can send point-to-point in-
validation or update messages to those processors that are ac-
tually caching that block. This is in contrast to the invalidating
broadcast required by the snoopy protocol. The scalability of
DASH depends on this ability to avoid broadcasts. Another im-
portant attribute of the directory-based protocol is that it does
not depend on any specific interconnection network topology.
As a result, we can readily use any of the low-latenicy scalable
networks, such as meshes or hypercubes, that were originally
developed for message-passing machines {7].

While the design of bus-based snoopy coherence protocols
is reasonably well understood, this is not true of distributed
directory-based protocols. Unlike snoopy protocols, directory-
based schemes do not have a single serialization point for all
memory transactions. While this feature is responsible for their
scalability, it alsc makes them more complex and forces one to
rethink how the protocol should address the fundamental issues
of correctness, system performance, and complexity.

The next section outlines the important issues in designing
a cache coherence protocol. Section 3 gives an overview of
the DASH hardware architecture. Section 4 describes the de-
sign of the DASH coherence protocol, relating it to the issues
raised in section 2. Section 5 outlines some of the additional
operagions supported beyond the base protocol, while Section 6
discusses scaling the directory structure. Section 7 briefly de-
scribes our approach to verifying the correctness of the proto-
col. Section 8 compares the DASH protocol with the proposed
IEEE-SCI (Scalable Coherent Interface) protocol for distributed
directory-based cache coherence. Finally, section 9 presents
conclusions and summarizes the current status of the design
effort.

2 Design Issues for Distributed Coher-
ence Protocols

The issues that arise in the design of any cache coherence pro-
tocol and, in panicular, a distributed directory-based protocol,
can be divided into three categories: those that deal with cor-
rectness, those that deal with the performance, and those related
to the distributed control of the protocol.

2.1 Correctness

The foremost issue that any multiprocessor cache coherence
protocol must address is correctness. This translates ‘nto re-
quirements in three areas:

Mcemory Consislency Model: For a uniprocessor, the model
of a correct memory system is well defined. Load operations
retwm the last value written to a given memory location. Like-
wise, store operations bind the value returned by subsequent
loads of the location until the next store. For multiprocessors,
however, the issue is more complex because the definitions of
“last value written”, “subsequent loads” and “next store™ be-
come less clear as there may be multiple processors reading and
writing a location. To resolve this difficulty a number of mem-
ory consistency models have been proposed in the literature,
most notably, the sequential and weak consistency models [8).
Weaker consistency models attempt to locsen the constraints on
the coherence protocol while still providing a reasonable pro-
gramming model for the user. Although most existing systems

utilize a relatively strong consistency model, the larger latencies
found in . distributed system favor the less constrained models.

Deadlock: A protocol must also be deadlock free. Given
the arbitrary communication patterns and finite buffering within
the memory system there are numerous opportunities for dead-
lock. For example, a deadlock can occur if a set of transactions
holds network ang " iffer resources in a circular manner, and
the consumption of one request requires the generation of an-
other request. Similarly, lack of How control in nodes can cause
requests to back up into the network, blocking the fiow of other
messages that may be able to release the congestion.

Error Handling: Another issue related to correctness is sup-
port for data integrity and fault tolerance. Any large system will
exhibit failures, and it is generally unacceptable if these fail-
ures result in cormupted data or incorrect results without a fail-
ure indication. This is especially true for parallel applications
where algorithms are more complex and may contain some non-
determinism which limits repeatability. Unfortunately, suppont
for data integrity and fault-tolerance within a complex protocol
that attempts to minimize latency and is executed directly by
hardware is difficult. The protocol must aitempt to balance the
leve! of data integrity with the increase in latency and hard-
ware complexity. At a minimum, the protocoi should be able to
Q2o all detectable failures, and convey this information to the
processurs affected.

2.2 Performance

Given a protocol that is comrect, performance becomes the next
important design criterion. The rwo key metrics of memory
system performance are latency and bandwidth.

Latency: Performance is primarily determined by the la-
tency experienced by memory requests. In DASH, suppont for
cachable shared data provides the major reduction in latency.
The latency of write misses is reduced by using write buffers
and by the support of the release consistency model. Hiding
the latency for read misses is usually more critical since the
processor is stalled until data is returned. To reduce the la-
tency for read misses, the protocol must minimize the number
of inter<luster messages needed to service a miss and the delay
associated with each such message.

Bandwidth: Providing high memory bandwidth that scales
with the number of processors is key to any large system.
Caches and distributed memory form the basis for a scal-
able, high-bandwidth memory system in DASH. Even with dis-
tributed memory, however, bandwidth is limited by the serial-
ization of requests in the memory system and the amount of
traffic generated by each memory request.

Servicing 2 memory request in a distribuied system often
requires several messages to be transmitted. For example, a
message to access a remote location generates a reply message
containing the data, and possibly other messages invalidating
remote caches. The component with the largest serialization in
this chain limits the maximum throughput of requests. Serial-
ization affects performance by increasing the queuing delays,
and thus the latency, of memory requests. Queueing delays can
become critical for locations that exhibit a large degree of shar-
ing. A protocol should artempt to minimize the service time
at all queuing centers. In particular, in a distributed system no
central resources within a node should be blocked while intes-
node communication is taking place to service a request. In this
way serialization is limited only by the time of local, intra-node
operaticns.




The amount of traffic generated per request also limits the
effective throughput of the memorv system. Traffic seen by
the global interconnect and memory subsystem increases the
queucing for these shared resources. DASH reduces traffic by
providing coherent caches and by distributing memory among
the processors. Caches filter many of the requests for shared
data whils grouping memory with processors removes private
references if the corresponding memory is allocated within the
local cluster. At the protocol level, the number of messages
required to service differcnt types of memory requests should
be minimized, unless the extra messages directly contnbute to
reduced latency or senalization.

2.3 Distributed Control and Complexity

A coherence protocol designed to address the above issues must
be partticned among the distributed components of the mult-
processor. These components include the processors and their
caches, the directary and main memory controllers, and the in-
terconnection network. The lack of a single serialization point,
such as a bus, complicates the control since transactions do not
complete atomically. Furthermore, multiple paths within the
memory system and lack of a single arbitration point within the
system allow some operations to complete out of order. The re-
sult is that there is a nch set of interactions that can take place
between different memory and coherence transactions. Paru.
tioning the control of the protocol requires a delicate balance
between the performance of the system and the complexity of
the components. Too much complexity may effect the ability
to implement the protocol or ensure that the protocol is correct.

3 Overview of DASH

Figure 2 shows a high-level pizture of the DASH uvrototype we
are building at Stanford. In order 1o manage the size of the
prototype design effort, a commercial bus-based multiprocessor
was chosen as the processing node Each node (or clusrer) 1s
a Silicon Graphics POWER Stauon 4D/240 [4). The 4D/240
systemn consists of four high-performance processors, each con-
nected 1o a 54 Kbyte first-level instruction cache, and a 64 Kbyte
write-through data cache. The 64 Kbyte data cache interfaces
to a 256 Kbyte second-level write-back cache through a read
buffer and a 4 word desp write-buffer. The main purpose of this
second-level cache is to convert the wrile-through policy of the
first-level 1o a write-back policy. and to provide the extra cache
tags for bus snooping. Both the fust and second-level caches
are direct-mapped.

In the 4D/240, the second-level caches are responsible for bus
snouping and thaintaining consistency among the caches in the
ciuster. Consistency is maintained using the Illirois coherence
protocol [19], which is an invalidauon-based ownzrship proto-
col. Before a processor can wnie to a cache ling, it must first
acquire exclusive ownership of that line by requesting that all
other caches invalidate their copy of that line. Once a processor
has exclusive ownership of a cache hine, it may write to tha
line without consuming further bus cycles.

The memory bus (MPBLUS) of the 413/240 is a pipelined syn-
chronous bus, supporting memory-to-cache and cache-to-cache
transfers of 16 bytes every 4 bus clocks with a latency of 6 bus
clocks. Whule the MPBUS is pipehined, it is not a split transac-
uon bus. Consequently, it is not possible to efficienty interleave
long durauen remote transactions with the shon duration local
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Figure 2: Block diagram of sample

transactions. Sine s ability is critical to DASH, we have
extenided the AMiP3US protocol to suppornt a retry mechanism.
Remoie ren.ov. 2re signied o reay while the intercluster
messages are ~2ing processed To avoid unnecessary retries the
processor is m y.ked from 2cbitration unti} the response from the
remote request has been received. When the response amves,
the requesting processor is unmasked, retnes the request on the
bus, and s supplied the remote data.

A DASH system consists of a number of modified 4D/240
systems that have been supplemenied with a directory controlier
board. This directory controller b «d is responsible for main-
taining the cache coherence acrosc .ne nodes and serving as the
interface to the interconnection network.

The directory board is implemented on a single printed cis-
cuit board and consists of five major subsystems as shown in
Figure 3. The directory conroller (DC) contains e ditectory
memory corresponding to the portion of main mewary present
within the cluster. It also initiates out-bound netw .k requests
and replies. The pseudo-CPU (PCPU) is responcitie for buffer-
ing incoming requests and issuing such requests on the cluster
bus. It mimics a CPU on this bus on behalf of remote processors
except that responses from the bus are scnt out by the directory
controller. The reply controller (RC) tracks cutstanding requests
madc by the local processors and receives and bufters the corre-
sponding replies from remote clusters. It acts as memory when
the local processors are allowed to retry their remote requests.
The nerwork interface and the local portion of the network it-
self raside on the directory card. The interconnection network
consists of a pair of meshes. One mesh 1s dedicated to the re-
quest messages while the other handles rephies. These meshes
utilize wormhole routing [9) to minim:ze latency. Finally, the
board contains hardware monitoring logi- and miscellaneous
cortrol and status registers. The mo-.itonng logic samples a
variety of directory board and bus events from which usage and
performance statistics ¢an he derived.

The directory memory is organized as an array of directory
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Figure 3. Directory board block diagram.

entries. There is one entry for each memory block. The direc-
tory entries used in the prototype are identical to that originally
proposed in [6]. They are composed of a single state bit to-
gether with a bit vector of pointers to clusters. The state bit
indicates whether the clusters have a read (shared) or read/write
(dirty} copy of the data. The bit vector contains a bit for each
of the sixteen clusters supported in the prototype. Associating
the directory with main memory allows the directory 1o be built
with the same DRAM technology as main memory. The DC ac-
cesses the directory memory on each MPBUS transaction along
with the access to main memory. The directory information is
combined with the type of bus operation, address, and result
of the snooping within the cluster to determine what network
messages and bus controls the DC will generate.

The RC maintains its state in the remore access cache (RAC).
The functions of the RAC include maintaining the state .. cur-
rently outsianding requests, buffering replies from the .ctwork
and supplementing the functionality of the processors' cacher
The RAC is organized as a snoupy cache with augmented state
information. The RAC's state machines allow accesses from
both the network and the cluster bus. Replies from the network
are buffered in the RAC and cause the waiting procsssor to be
released for bus arbutration. When the released processor re-
trics the access the RAC supplies the data via a cache-to-cache
transfer.

kB |

As stated in Section 2, the correctness of wie coherence protocol
is a functiun of the memory consistency model adopted by the
architecture. There is a whole spectrum of choices for the level
of consistency to support directly in hardware. At ane end is the
sequennial consistency model [16] which requires the execution
of the parallel program to appear as some interleaving of the
exccution of the parallel processes on a sequential machine, As
one moves lowards weaker models of consistency, performance
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gains are made at the cost of a more complex programming
mode! for the user.

The base model of consistency provided by the DASH hard-
ware is called release censistency. Release consistency [10] is
an cxtension of the weak consistency model first proposed by
Dubais, Scheurich and Briggs [8]. The distinguishing character-
istics of release consistency is that it allows memory operations
issued by a given processor to be observed and complete out
of order with respect to the other processors. The ordering of
operations is only preserved before *“releasing” synchronization
operations or explicit ordering operations. Release consistency
takes advantage of the fact that while in a critical region a pro-
grammer has already assured that no other processor is accessing
the protected variables. Thus, updates to these variables can be
observed by other processors in arbitrary order. Only before
the lock release at the end of the region does the hardware need
to guarantee that all operations have completed. While release
consistency does complicate programming and the coherence
protocol, it can hide much of the overhead of write operations.

Support for release consistency puts several requirements on
the system. First, the hardware must suppon a primitive which
guarantees the ordering of memory operanons at specific points
in a program. Such fence (5, 10] primitives can then be placed
by software before releasing synchronizauion points in order to
implement release consistency. DASH supponts two explicit
fence mechanisms. A full-fence operation stalls the proces-
sor until all of its pending operations have been completed,
while a write-fence simply delays subsequent write-operations.
A higher performance implementation of release consistency
includes implicit fence operations withun the releasing synchro-
nization operatiens themselves. DASH supports such synchro-
nization opcrations yielding release consistency as its base con-
sistency model. The explicit fence operations in DASH then
allow the user or compiler to synthesize stricter consistency
m dels if needed.

I'he release consistency model also places constraints on the
base coherence protocol. First, the systern must respect the local
dependencies generated by the memory operations of a single
processor. Second, all coherence operations, especially opera-
tions related to writes, must be acknowledged so that the issuing
processor can determine when a fence can proceed. Third, any
cache line owned with pending invalidations against it can not
be shared beiween processors. This prevents the new processor
from improperly passing a fence. If sharing is allowed then
the receiving processor must be informed when all of the pend-
ing invalidates have been acknowledged. Lastly, any operations
that a processor issues after a fence operation may not become
visible to any other processor uniil all operations preceding the
fence have completed.

4 The DASH Cache Coherence Protocol

In vur discussion of the coherence protocol, we use the follow-
ing naming convenuons for the vanous clusters and memones
involved in any given transaction. A locual cluster is a cluster
that contains the processor originaung a given request, while
the honte cluster is the cluster which contans the main memory
and directory for a given physical memory address. A remote
cluster is any other cluster. Likewise, local memory refers to
the main memory associated with the local cluster while remote
memory is any memory whose home is not the local.

The DAS!! coheronce protocol is an invalidauon-based own-




ership protocol. A memory block can be in one of three states as
indicated by the associated directory entry: (i) uncached-remote,
that is not cached by any remote cluster: (ii) shared-remote, that
is cached in an unmodified state by one or more remote clus-
ters, or (iii) dirty-remore, that is cached in a modified state by
a single remote cluster. The directory does not maintain infor-
mation conceming whether the home cluster itself is caching
a memory block becauce all ransactions that change the state
of a memory block are issued on the bus of the home cluster,
and the snoopy bus protoco! keeps the home cluster coherent.
While we could have chosen not to issue all transactions on the
home cluster’s bus this would had an insignificant performance
improvement since most requests 10 the home also require an
access 1o main memory to retrieve the actual data.

The protocol maintains the notion of an owning cluster for
ecach memory block. The owning cluster is nominally the home
clusier. However, in the case that a memory biock is present
in the dinty state in a remote cluster, that cluster is the owner.
Only the owning cluster can complete a remote reference for a
given block and update the directory state. While the directory
entry is always maintained in the home cluster, a diny cluster
initates all changes to the directory state of a block when it
is the owner (such update messages also indicate that the dirty
cluster is giving up ownership). The order that operations reach
the owning cluster determines their global order.

As with memory blocks, a cache block in a processor’s cache
may also be in one of three states: invalid, shared, and dinty.
The shared state impiies that there may be other processors
caching that location. The dirty siate implies that this cache
contains an exclusive copy of the memory block, and the block
has been modified.

The following secuons oudine the three primiiive operatons
supported by the base DASH coherence protocol: read, read-
exclusive and write-back. We also discuss how the protocol
responds to the issues that were brought up in Scction 2 and
some of the alternative design choices that were considered. We
describe only the normal flow for the memory transactions in the
following sections, except:on cases are covered in section 4.6.

4,1

Memory read requests are initiated by processor load instruc-
tions. If the location is present in the processor's first-level
cache, the cache simply supplies the data. If not present, then a
cache fill operation must bnng the required block into the first-
level cache. A fill operation first attempts to find the cache line
in the processor's second-level cache, and if unsuzcessful, the
processor issues a read request on the bus. This read request ei-
ther completes locally or is signaled to retry while the directory
board interacts with the other clusters to retneve the required
cache line. The detaied flow for a read request is given in
Figure 7 in the appendix.

The protocol tnes 1o mirumize latency by using cache-1o-
cache transfers. The local bus can satisfy a remote read if the
given line is held in another processor's cache or the remote
access cache (RAC). The four processer caches together with
the RAC form a five-way set associative (1.25 Mbyte) cluster
cache. The effective size of this cache is smaller than a true set
associative cache because the entries in the caches need not be
distinct. The check for 2 local copy is initiated by the normal
snooping when the read is issued on the bus. If the cache line
15 present in the shared state then the data is simply transferred
over the bus to the requesting processor and no access to the
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remote home cluster 'is needed. If the cache line is held in a
dirty state by a local processor, however, something must be
done with the ownership of the cache line since the processor
supplying the data goes to a shared state in the Illinois protocol
used on the cluster bus. The two options considered were to: (i)
have the directory d a sharing write-back to the home cluster,
and (ii) have the RAC take ownership of the cache line. We
chose the second option because it permits the processors within
a cluster to read and write a shared location without causing
traffic in the network or home cluster.

If a read request cannot be satisfied by the {ocal cluster, the
processor is forced to rewry the bus operation, and a request
message is sent to the home clustes. At the same time the
processor is masked from arbitration so that it does not tie up the
local bus. Whenever a remote request is sent by a cluster, a RAC
entry is allocated to act as a placeholder for the reply to this
request. The RAC entry also permits merging of requests made
by the different processors within the same cluster. If another
request to the same memory block is made, a new request will
not be sent to the home cluster; this reduces both waffic and
latency. On the other hand, an access to a different memory
block, which happens to map to a RAC entry already in use,
must be delayed until the pending operation is complete. Given
that the number of active RAC entries is small the benefit of
merging should outweigh the potential for contention.

When the read request reaches the home cluster, it is issued
on that cluster's bus. This causes the directory to look up the
status of that memory block, If the block is in an uncached-
remote or shared-remote state the directory controllier sends the
data over the reply network to the requesting cluster. It also
records the fact that the requesting cluster now has a copy of
the memory block. If the block is in the dinty-remote state,
however, the read request is forwarded to the owning, dinty
cluster. The owning cluster sends vut two messages in response
to the read. A message containing the data is sent directly to the
requesting cluster, and a sharing writeback request is sent to the
home cluster. The sharing writeback request writes the cache
block back to memory and also updates the direcvory. The flow
of messages for this case is shown in Figure 4.

As shown in Figure 4, any request not satisfied in the home
cluster is forwarded to the remote cluster that has a dirty copy
of the data. This reduces latency by penmitting the dirty clus-
ter to respond directly to the requesting cluster. In addition,
this forwarding straiegy allows the directory controller to si-
multaneously process many requests (i.e. to be multithreaded)
without the added complexity of naintaining the state of out-
standing requests. Serialization is reduced to the ume of a sin-
gle intra-cluster bus transaction. The only rescurce held while
inter-cluster messages are being sent is a single entry in the
oniginating cluster's RAC,

The downside of the forwarding stra.egy is that it can result
in addidonal latency when simultaneous accesses are made to
the same block. For example, if two read requests from differ-
ent clusters are reccived close together for a line that is dinty
remote, both will be forwarded to the dirty cluster, However,
only the first one will be satisfied since this request will force
the dirty cluster to lose ownership by doing a sharing writeback
and changing its local state to read only. The second request
will not find the dirty data and will be retumed with a nega-
tive acknowledge (NAK) to its originating cluster. This NAK
will force the cluster to retry its access. An alternative to the
forwarding approach used by our protocol would have been to
buffer the read raquest at the home cluster, have the home send
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Figure 4: Flow of Read Request to remote memory with direc-
tory in difty-remote state,

a flush request to the owning cluster, and then have the home
send the data back to the originating cluster. We did not adopt
this approach because it would have increased the latency for
such reads by adding an extra network and bus transacticn. Ad-
ditionally, it would have required buffers in the directory to hold
the pending transaction, or blocking subsequent accesses to the
directory until the first request had been satisfied.

4.2 Read-Exclusive Requests

Write operations are initiated by processor store instructions.
Data is written through the first-level cache and is buffered in a
four word ceep write-buffer. The second-level cache can retre
the write if it has ownership of the line. Otherwise, a read-
exclusive request is issued to the bus to acquire sole ownership
of the line and retrieve the other words in the cache block. Ob-
taining ownership does not block the processor directly; only
the write-buffer output is stalled. As in the case of read requests,
cache coherence operations begin when the read-exclusive re-
quest is 1ssued on the bus. The detailed flow of read-exclusive
request is given in the appendix in Figure 9 and is summarized
below.

The flow of a read-exclusive is similar to that of a read re-
quest. Once the requ=st is issued on the bus, it checks other
caches at the local cluster level. If one of those caches has
that memory block in the dirty state (it is the owner), then that
cache supplies the data and ownership and invalidates its own
copy. If the memory block is not owned by the local cluster,
a request for ownership is sent to the home cluster. As in the
case of read requests, a RAC entry is allocated w0 receive the
ownership and data.

At the home cluster, the read-exclusive request is echoed
on the bus. If the memory block is in an uncached-remote or
shared-remote state the data and ownership are immediately sent
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Figure 5: Flow of Read-Exclusive Request to remote memory
with directory in shared-remote state.

back over the reply network. In addiuon, if the block is in the
shared-remote state, cach cluster caching the block is sent an
invalidation request. The requesting cluster receives the data
as before, and is also informed of the number of invalidation
acknowledge messages to expect. Remote clusters send inval.
idation acknowledge messages o the requesiing cluster after
completing their invalidation. As discussed in Section 3.1, the
invalidation acknowledges are needed by the requesting proces-
sor to know when the store has been completed with respect to
all processors. The RAC entry in the requesting cluster persists
until all invalidation acknowledges have been received. The re-
ceipt of the acknowledges generally occurs after the processor
itself has been granted exclusive ownershup of the cache line
and continued exccuton. Figure 5 depicts this shared-remote
case.

If the directory indicates a dirty-remote state, then the request
is forwarded to the owning cluster as in a read request. At the
diny cluster, the read-exclusive request is issued on the bus,
This causes the owning processor to invalidate that block from
its cache and to send a message to the requesung cluster grant.
ing ownership and supplying the data. In parallel, a request
is sent to the home cluster to updatz ownerstup of the biock,
On receiving this message, the home sends an acknowledg-
ment to the new owning cluster. Thus extra acknowledgment is
needed because the requesting cluster (the new owning cluster)
may give up ownership (¢.g. due to a wrileback) even before
the home directory has rsceived an ownership change message
from the previous owner. If ticse massages reach the home
out of order the directory will become permanently inconsis-
tent. The extra acknowledgment guarantees that the new owner
retain ownership until the directory has been updated.

Performance of the read and write operations is closely re-
lated to the speed of the MPBUS and the latency of inter-cluster
communication. Figure § shows the latencies for various mem-




Read Operations

Hit in 1st Level Cache 1 peclock
Fill from 2nd Level Cache 12 pclock
Fill from Local Cluster 22 pelock
Fill from Remote Cluster 61 pclock
Fill from Dirty Remote, Remole Home 80 peclock

Fill cperanons feich 16 byte cache blocks ard erpry
the write-buffer before feiching the read-muss cache block

Write Operatinns

Hit on 2nd Level Owned Block 3 pelock
Owned by Local Cluster 18 peclock
QOwned in Remote Cluster 57 pelock

Owned in Dirty Remote, Remote Home 76 pelock

Write operanions only stall the write-buffer, not the
processor, while the fill 15 catstunding

Write delays assume Release Corsistency (1 e they do
not wait for rem. e invalid ites o be acknowledged)

Figure 6: latercy for vanous memory system operations in
processor clocks. Each processor clock in the prototype is 40
ns.

ory operatons in the DASH prototype assuming no network or
bus contention. The figure illustrates the one-to-one relation-
ship between the latency of an operation and its corresponding
number of network hops and bus transactions. In DASH, the
network and directory board overhead is roughly equal to the
CPU overhead to initiate a bus transaction. Thus, if an intra-
cluster bus transaction takes roughly 20 processor clocks then
an inter-cluster transaction that involves two clusters, (i.e. three
bus transactions) takes roughly 60 processor clocks, and a three
cluster transaction takes R0 processor clocks.

4.3 Writeback Requests

A dinty cache line that is replaced must be written back to
memory. If the home of the memory hlock is the Iocal cluster,
then the data 1s simply wntten back to main memory. If the
hotne cluster is remote, then a message is sent to the remote
home which updates the man memory and marks the block
uncached-remote  The flow of a wnieback operation is given
in the appendiz 1in Figure &.

4.4 Bus Initiated Cache Transactions

CPU initiated transactions have been described in the preceding
sections. The protocol also includes transitions made by the
slave caches that are monitoring their respective buses. These
transitions are equivalent to those in a normal snoopy bus proto-
col. In particular, a read operation on the bus will cause a dirty
cache to supply data and change to a shared state. Diny data wiil
also be written back to main memory (or the KAC if remote). A
read-exclusive operation on the bus will cause all other cached
copies of the line to be invahdated Note that when a vahd line
in the second-level cache 15 invalidated, the first-level cache is
also invalidated so that the processor's second-level cache i5 a
superset of the first-level cache.

4.5 Support for Memory Consistency

As discussed in section 3.1, DASH supports the release consis-
tency model, Memory system latency 18 reduced because the

semantics of relcase consistency allows the processor to con-
tinue afier issuing a write operation. The write-buffer within
the processor holds the pending operation, and the write-buffer
is allowed to retire the write before the operation has completed
with respect to all processors. The processor itself is allowed (o
continue while the write-buffer and directory controller are com-
pleting the previous operations. Ordering of memory accesses
is only guaranteed between operations separated by a releasing
synchronization operation or an explicit fence operation. Upon
a write-fence (explicit or implicit), all previous read and write
operations issued by this processor must have completed with
respect to all processors before any additional write operations
can become visible to other processors.

DASH implements a write fence by blocking a processor's
access to its second-level cache and the MPBUS until all reads
and writes it issued before the write fence have completed. This
is done by stalling the write-fence {which is mapped to a store
operation) in the processor's write-buffer. Guarantecing that
preceding teads and writes have been performed without impos-
ing undue processor stalls is the challenge. A first requirement
is that all invalidation operations must be ackrowledged. As
illustrated in Figure 5, a writc operation to shared data can pro-
ceed after receiving the exclusive reply from the directory, but
the RAC entry associated with this operation petsists until all
of the acknowledges are received by the reply controller (RC).
Each RAC entry is tagged with the processor that is responsible
for this entry and each processor has a dedicated counter in the
RC which counts the total number of RAC entries in use by that
processor. A write fence stalls until the counter for that proces-
sor is decremented to zero. At this point, the processor has no
outstanding RAC entries, so all of its invalidation acknowledges
must have been received.

We observe that simply using a per processor counter to keep
track of the number of outstanding invalidations is not sufficient
tu suppon release consistency. A simple counter does not allow
the processor cache to distinguish between dinty cache lines
that have outstanding invalidates from those that do not. This
results in another processor not being able to detect whether
a line retumned by a dirty cache has outstanding invalidates.
The requesting processor could then improperly pass through 2
fence operation. Storing the pending invalidate count on a per
cache line basis in the RAC, and having the RAC snoop bus
transactions, allows cache lines with pending invalidates to be
distinguished. The RAC forces a reject of remote requests to
such blocks with a NAK reply. Local accesses are allowed, but
the RAC adds the new processor to its entry for the line making
this processor also responsible for the original invalidations.
Write-back requests of a line with outstanding invalidations are
blocked by having the RAC take diny ownership of the cache
block.

In the protocol, invalidation acknowledges are sent to the
local cluster that initiated the memory request. An altemative
would be for the home cluster to gather the acknowledges, and,
when all have been received, send a message to the requesting
cluster indicating that the request has been completed. We chose
the former because it reduces the waiting time for completion
of a subsequent fence operation by the requesting cluster and
reduces the potential of a hot spot developing at the memory.

4.6 Exception Conditions

The description of the protocol listed above does not cover all of
the conditions that the actual protocol must address. While enu-




merating all of the possible exceptions and protocol responses
would require an overly detailed discussion, this scction intro-
duces most of the exception cases and gives an idea of how the
protocol responds to each exception.

One exception case is that a request forwarded to a dinty
cluster may arrive there to find that the dirty cluster no longer
owns the data. This may occur if another access had previously
been forwarded to the dirty cluster and changed the ownership
of the block, or if the owning cluster performs a writeback.
In these cases, the originating cluster is sent a NAK response
and is required to reissue the request. By this ime ownership
should have stabilized and the request will be satisfied. Note
that the reissue is accomplished by simply releasing the proces-
sor’s arbitration mask and treating this as a new request instead
of replying with data.

In very pathological cases, for example when ownership for a
block is bouncing back and forth between two remote clusters,
a requesting cluster (some third cluster) may rececive multiple
NAK’s and may eventually time-out and return a bus error.
While this is undesirable, its occurrence is very improbable in
the prototype system and, consequently, we do not provide a
solution. In larger systems this problem is likely to need a com-
plete answer. One solution would be to implement an additional
directory state which signifies that other clusters are queued for
access. Only the first access for a dirty line would be forwarded
while this request and subsequent requests are queued in the di-
trectory entry, Upon receipt of the next ownership change the
directory can respond to all of the requests if they are for read
only copies. If some are for exclusive access then ownership
can be granted to each in turn on a pseudo-randorn basis. Thus,
eventually all requests will be fulfilled.

Another set of cxceptions arise from the multiple paths
present in the system. In particular, the separate request and
reply networks together with their associated input and cutput
FIFQ's and bus requesters imply that some messages sent be-
tween two clusters can be received out of order. The protocol
can handle most of these misorderings because operations are
acknowledged and out-of-order rzquests simple receive NAK
responses. Other cases require more atention. For example, a
read reply can be overtaken by an invalidate request attempting
to purge the read copy. This case is handled by the snoop-
ing on the RAC. When the RAC sees an invalidation fequest
for a pending read, it changes the state of that RAC entry to
invalidated-read-pending. In this state, the RC conservatively
assumes that any read reply is stale and treats the reply as a
NAK response.

4.7 Deadlock

In the DASH prototype, deadlocks are eliminated through a
combination of hardware and protocol features. At the hard-
ware level, DASH consists of two mesh networks, each of
which guarantees point-to-point delivery of messages without
deadlocks. However, this by itself is not sufficient to prevent
deadlocks because the consumption of an incuming message
may require the generation of another outgoing message. This
can result in circular dependencies between the limited buffers
present in two or more nodes and cause deadlock.

To address this problem, the protocol divides all messages
into request messages (e.g. read and read-exclusive requests and
invalidation requests) and reply messages (e.g. read and read-
exclusive replies and invalidation acknowledges). Furthermore,
one mesh is dedicated to servicing request messages whle the

155

other handles seply messages Reply messages are guaranteed
to be consumed at the destination, pantly because of thesr nature
and partly because space for the reply data 1s prealincated in the
RAC. This eliminates the possibility of request-reply circular
dependencies and the associated deadlocks.

However, the protocol also relies on request messages that
generate additional requests. Because of the limited buffer
space, this can result in deadiocks due to request-request circu-
lar dependencies. Fairly large input and output FIFQ's reduce
the probability of this problem. If it does anse, the directory
hardware includes a time-out mechanism to break the possible
deadlock. If the directory has been blockzd for more than the
time-out period in attempting to forward a request it will in.
stead reject the request with a NAK reply message. Once this
deadlock breaking mode is entered enough other requests are
handled similarly so that anyv possible deadlock conditon that
has ansen within the request network can be eliminated. As
in cases discussed earlier, this scheme relies on the processor’s
abtlity to reissue its request upon receiving a NAK.

4.8 Error Handling

The final set of exceptions arise in response to ervor conditions
in the hardware or protocol. The system includes a number
of eror checks including ECC on main memory, panty on the
directory memory, length checking of network messages and
incousistent bus and network message checking. These checks
are reported to processors through bus errors and associated
error capture registers. Network errors and improper requests
are dropped by the receiver of such messages. Depending upon
the type of network message that was lost or corrupted. the
issuing processor will eventually time-out its originating request
or some fance operation which will be blocked wainng for a
RAC entry to be deallocated. The tirne-out generates a bus-
error which interrupts the processor. The processes using the
particular memory location are aborted, but low leve! operating
system code can recover from the error if it is not withun the
kemel. The OS can subsequendy ¢lean up the state of a .ine by
using back-door paths that allow direct addressing of the RAC
and directory memory.

S Supplemental Operations

During the evolution of the DASH protocol, several additional
memory operations were evaluated. Some of these operations
are included in the DASH prototype, while others were not
included due to hardware constraints or a lack of evidence that
the extension would provide significant performance gains.
The first major extension incorporated into the DASH pro-
tocol was support for synchroruzation operations. The shanng
characteristics of synchronization objects are often quite differ-
ent from those of normal data. Locks, barriers, and semaphores
can be highly contended. Using the normal directory protocol
for synchronization objects can lead to hot spots. For example,
when a highly contended lock 1s released, all processor caches
containing the lock are invalidated; thus invalidation results 1n
the waiting processors rushing to grab the lock DASH pro-
vides special quewe-based lock primiuves that use the directory
memory to keep track of clusters wajung for a lock. Using the
directory memory is natural since 1t1s already set up to track
queued ciusters, and the directory is normally accessed in read-
modify-wnite cycles that maich the atomic update necessary for




lecks. An unlock of a queus-based lock while clusters are wait-
1ng results in a grant of the lock being sent to one of the waiting
clusters. This grant allows the cluster to obtain the lock without
any further network messages. Thus, queue-based locks reduce
the hot spotting generated by contended locks and reduce the
latency between an unlock operation and subsequent acquisi-
tion of the lock. This and other synchronization primitives are
discussed 1n detail in [17].

Another set of operations included in the prototype help hide
the latency of memory operations. Normally, when a read is
issued the processor is stalled until the data comes back. With
very fast processors, this latency can be tens to hundreds of
processor cycles. Suppon for some form of prefetch can clearly
help. DASH suppotts both read prefeich and read-exclusive
prefetch operations [17]. These operations cause the directory
contreller to send out a read or mead-exclusive request for the
data, but do not block the processor. Thus, the processor is able
to overlap the fetching of the data with uscful work, When the
processor 1s ready to use the prefetched data, it issues a normal
read or read exclusive request. By this time the data will cither
be in the RAC or the prefetch will be outstanding, in which case
the normal read or read-exclusive is mesged with the prefetch.
In either case, the latency for the daia will be reduced. Ideally,
we would have liked to place the prefetched data directly in the
requesting processor’s cache instead of the RAC, but that would
have required significant modifications to the existing processor
boards.

There are some v.iriables for which a write-update coherence
protocol is more appropriate than the DASH write-invalidate
protocol [3). The prototype system provides for a single word
update write primitive which updates memory and all the caches
currently holding the word. Since exclusive ownership is not
required, the producer’s write buffer can retire the write as soon
as it has been issued on the bus, Update-writes are especially
useful for event synchronization. The producer of an event can
directly update the value cached by the waiung processor re-
ducing the latency and traffic that would result if the value was
invalidated. Ttus primitive is especially useful in implementing
barriers, as an update-write can be used by the last processor
entering the barrier to release all waiting processors. Update op-
erations conform to the release consistency memory model, but
taquire explicit fence operations when used for synchronization
purposes.

6 Scalability of the DASH Directory

The DASH directory scheme currently uses a full bit-vector
to identfy the remote clusters caching a memory block. While
this is reasonabie for the DASH prototype, it does not scale well
since the amount of directory memory required is the propor-
donal to the product of the main memory size and the number of
processors in the system. We are currently investigating a van-
ety of solutions which limit the overhead of directory memory.
The most straightforward modification is the use of a limited
number of pointers per directory entry. Each directory pointer
holds the cluster number of a cluster currenty caching the given
line. 1n any limited pointer scheme some mechanism must exist
10 handle cache blocks that are cached by more processors then
there are pointers, A very simple scheme resorts to a broadcast
in these cases [1]. Better results can be obtained if the pointer
storage memory revents to a bit vector when pointer overflow
occurs. Of course, a complete bit vector is not possible, but if
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each bit represents a region of processors the amount of traffic
generated by such overflows can be greatly reduced relative to
a broadcast.

Other schemes 10 scale the directory rely on restructuring of
directory storage. Possible solutions include allowing point-
ers to be shared between directory entries, or using a cache
of directory entries to supplement or replace the nomal direc-
tory [18, 13]. A directory structured as a cache need not have a
complete backing memory since replaced directory entries can
simply invalidate their associated cache entries (similar to how
mult-level caches mainiain their inclusion property). Recent
studies [13]) have shown that such sparse-directories can main-
tain a constant overhead of directory meémory compared with a
full-bit vector when the number of processors grows from 64
to 1024. A sparse directory using limited pointers and a coarse
vector only increases the total traffic by only 10-20% and shoutd
have minimal impact on processor performance. Furthermore,
such directory structures require only small changes to the co-
herence protocol given here.

7 Validation of the Protocol

Validation of the DASH protoco] presents a2 major challenge.
Each cluster in DASH contains a complex directory controller
with a large amount of state. This state coupled with the dis-
tributed nature of the DASH protocol results in an enormous
number of possible interactions between the controllers. Writ-
ing a test suite that exercises all possible interactions in rea.
sonable time seems intractable. Therefore, we are using two
less exhaustive testing methods. Both these methods rely on
the software simulator of DASH that we have devcloped.

The simulator consists of two tightly coupled components: &
low-level DASH system simulator that incorporates the coher-
ence protocol, and simulates the processor caches, buses, and
interconnection network at a very fine level of detail; and Tango
(11}, a high-level functional simulator that models the proces-
sors and executss parallel programs. Tango simulates parailel
processing on a uniprocessor while the DASH simulator pro-
vides detailed timing about latency of memory references. Be.
cause of the tight coupling between the two parts, our simulator
closely models the DASH machine.

Our first scheme for testing the protocol consists of running
existing parallel programs for which the results are known and
comparing the output with that fromn the DASH simulator. The
drawback of using parallel programs to check the protocol is
that they usc the mrmory system and synchronization features
in “well-behaved” ways. For example, a well-written parallel
program will nct release a lock that is already free, and parallel
progeams usuallv don’t modify shared variables outside of a
critical section. As a result, paralle! applications do not test a
large set of possible interactions.

To get at the more pathological interactions, our second
method relies on test scripts. These scripts can be written to
provide a fine level of control over the protocol transitions and
to be particularly demanding of the protocol. While writing an
exhaustive set of such test scripts is not feasible, we hope to
achieve reasonable test coverage with a smaller set of scripts
by introducing randomness into the execution of the scripts.

The randomness idea used is an extensior of the Berkeley
Random Case Generation (RCG) technique (22) used to verify
the SPUR cache controlier design. Our method, called Intelli-
gent Case Generation (ICG), is described in detail in {14). Each




script is a self-contained test sequence which executes a wumber
of memory operations on a set of processors. Each scnpt con.
sists of some initialization, a set of test operations, and a check
for proper results, Like RCG, multiple, independent scripts run
simultaneously and interact in two ways. First, a processor ran-
domly chooses which of the muldple active scripts it is going
to pick its next action from. Therefore, exccution of the same
set of scripts will be interleaved in time differently upon each
run. Second, while each script uses unique memory locations,
these locaticns may be in the same cache line. Scripts interact
by changing the cache state of cache lines used by other scripts.

1CG extends RCG in three ways. First, instead of simple two
step scripts (a write followed by a read), ICG suppons multi-
step scripts in which some steps are executed in series and
some are allowed 1o execute in parellel, Second, ICG provides
a finer level of control over which processors execute which
steps of a script and inroduces randomness into the assigrunent
process. Finally, ICG allows for a more flexible assignment of
test addresses so that particular scripts do not have to be writien
10 interact, Using 1CG to dynamically assign addresses results
in different sctipts interacting at different times dufing a run,
and results in the same script using various combinations of
local and remote memory.

Of course, the hardware itself will also serve as a verifica-
tion tool. The hardware can run both parallel programs and
test scripts. While debugging protecol errors on the hardware
will be difficult, the sheer number of cycles executed will be a
demanding test of the protogol.

8 Comparison with Scalable Coherent
Interface Protocol

Several protocols that provide for distributed directory-based
cache coherence have been proposed {15, 21). The majority of
these protocols have not been defined in enough detail to do
a reasonable comparison with the DASH protocol. One excep-
tion is the IEEE P1596 - Scalable Coherent Interface (SCI) {12).
While still evolving, SCI has been documented in sufficient de-
tail to make a comparison possible. SCI differs from DASH,
however, in that it is only an interface standard, not a complete
system design. SCI only specifies the interfaces that each pro-
cessor should implement, leaving open the actual node design
and exact interconnection network.

At the system level, a typical SCT sysiem would be similar
to DASH with each processing node containing a processor, a
section of main memory. and an interface to the interconnec-
tion .2t ork. Both systems rely on coherent caches maintained
by distributed directories and distributed memories to provide
scalable memory bandwidth. The major difference lies in how
and where the directory information is maintained, In SCI, the
directory is a distributed sharing list maintained by the proces-
sor caches themselves. For example, if processors A, B, and
C are caching some location, then the cache entries stonng this
location will form a doutly-linked list. At main memory, only
& pointer 1o the processor at the head of ihe linked list is main-
tained. In contrast, DASH places al] the directory information
with main memory.

The main advantage of the SCI scheme over DASH is that
the amount of directory pointer storage grows naturally with the
number of processors in the sysiem. In DASH, the maximum
number of processors must be fixed beforchand, or the system
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must suppont some form of limited directory informaton. On
the other hand, the SCI directory memory would normally em.
proy the same SRAM technology used by the processor caches
while the DASH directory is implemented in main memory
DRAM technology. Another feature of SCI is that it guar-
antees forward progress in all cases, including the pathological
“live-lock” case alluded to in section 4.6.

The primary disadvantage of the SCI scheme is that the distni-
bution of the individual directory entries increases the complex-
ity and latency of the directory protocol, since additional direc-
tory update messages must be sent between processor caches.
For example, on a write t0 a shared block cached by .\ + 1
processors (including the wriung processor), the writer must
perform the following actions: (i) detach itself from the sharing
list; (ii) interrogate memory o determine the head of the shar-
ing list; (iii) acquire head status from the current head; and (iv)
serially purge the other processor caches by issaing invalidation
requests and receiving replies indicating the next processor in
the list. Altogether, this amounts to 2.\ « 8 messages including
-\ serial directory lookups. In contrast, DASH can locate all
sharing processors in a single directory lookup and invalidation
messages are serialized only by the network transmission rate.
Likewise, many read misses 1n SCI require more inter-node
communication. For example, if a block 1s currently cached,
processing a read muss requires four messages since only the
head can supply the cache block. Furthermore, if a miss is
replacing a valid block 1n the processor's cache, the replaced
block must be detached from its sharing list.

Recenty, the SCI working commitiee has proposed a number
of extensions to the base protoco!l that address some of these
shortcomings. In particular, the comminee has proposed ad-
ditional directory pomnters that allow sharing lists to become
sharing trees, the support for request forwarding, and the use of
a clean cached state. While these extensions reduce the differ-
ences between the two protocols, they also add complexity The
fundamental question is what set of features leads 1o better per-
formance ai a given complenty level. As in the design of cther
hardware systems, this requires a careful balance between opi-
mizing the performance of common operations without adding
undue complexity for uncommon ones. The lack of good statis-
tics on scalable shared memory machines, however, makes the
identification of the common cases difficult Thus, a complete
comparison of the protocols is likely to require actual imple-
mentations of both designs and much more experience with this
class of machines.

9 Summary and Status

Distributed directory-based coherence protocols such as the
DASH protocol allow for the scalability of shared-memory mul-
tiprocessors with cohereat caches. The cost of scalability is the
added complexity of directory based schemes compared with
existing snoopy, bus-based coherence protocols. The complex-
ity arises primarily from the lack of a single serialization point
within the system and the lack of atomic operations Additional
complexity stems simply from the larger set of components that
interact to execute the protocol and the deeper huerarchy within
the memory system.

Minimizing memory latency 15 of paramount importance in
scalable sysiems. Support for coherent caches is the first step in
reducing latency, but the memory system must also be optimized
towards this goal. The DASH protocol attempts to minimize la-




tency through the use of the release consistency model, cache-
to-cache transfers, a forwarding control strategy and special pur-
pose operations such as prefetch and update write. Adding these
latency reducing features must, of course, be traded off with the
complexity needed to support them. All of the above features
were added without a signitficant increase in the complexity of
the hardware.

Venficauon of a complex distnbuted directory-based cache
coherence prorocol is @ major challenge. We feel that verifica-
tion throuch the use of test scnpts and extensive random testing
will provide an acceptable level of confidence. The design ef-
fort of the prototype 15 currentls 1n the implementation phase.
A functienal simulator of the hardware 15 running as well as a
gate level sunalanon of the directony card. We plan to have a
4 cluster, 16 processor system runming dunng the summer of
1990. This prototype should senve as the ultimate venfication
of the de<.gn and provide a vehicle to fully evaluate the design
concents discussed in this paper.
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Tne DASH project team is compased of a number of gradu-
ate studerts and faculty within the Computer System Labora-
tory at Stunford Many related 1opics are being researched and
the results of much of this work has influenced the design of
the DASH architecture and coherence protoccl. Besides the
authors, a rumber of others have directly contributed to the
deveiopinent of DASH. In parucular, we would like to thank
Wolf-Dieinch Weber for creating the DASH simulator, Helen
Davis and Stephen Goldschmidt for modifying their Tango sim-
ulator to witeract with the DASH simulator, and Bruce Kleinman
for deseleping the DASH protocol verifier. Likewise, we want
to recogruze rescarch engineer Dave Nakahira who has made
significart contnbutions to the design of the DASH hardware.
We also wish to thank Valid Logic Systems who has donated
the CAE sulinare used o develop the DASH prototype.

This rescarch is supported by DARPA contract N0OOO14-87-
K-0828. Dun lenoski 1s supported by Tandem Computers In-
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Acknowledgments

References

[1) A. Agarwal, R. Simoni, J. Hennessy, and M, Horowitz.
An evaluation of directory schemes for cache coherence.
In Proc of the 1Sth Annual Int Sim on Computer Archi-
tecture, pages 2RO 289, June 1988.

JoArchubald and § -1 Baer. An economical solution to the
cache coherenge problem. In Proc of the 12th Int. Sym.
on Computer Architecture, pages 355-362, June 1985.

] Archibald and J.-1.. Baer Cache coherence protocols:
Evaluation yaing a multiprocessor simulation model. ACM
Trars. on Computer Systems, 414,273 298, 1986.

r. Baskett, T. Jermoluk, and D Solomoen. The 4D-MP
graphics superworketaton  Computung 4+ graphics = 40
MIPS + 30 MFLOPS and 100,050 lighted polygons per
secord In Proc. of the 33rd IEEE Computer Soriety Int.
Conf - COMPCON XK, pages 168 471, February 1988,

15%

[5] W. C. Branley, K. P. McAuliffe, and J. Weiss. RP3
processor-memory element. In Proc. of the 1985 Int. Conf
on Parallel Processing, pages 782-789, 1985,

{6) L. Censier and P. Feautrier. A new solution to coherence
problems in multicache systems. /EEE Trans. on Comput-

ers, C-27(12):1112-1118, December 1978.
{7

-

W. J. Dally. Wire efficient VLS! multiprocessor commu-
nication networks. In Stanford Conference on Advanced
Research in VLSI, 1987.

(8] M Dubois, C. Scheurich, and F. Briggs. Memory access
buffering in multiprocessors. In Proc. of the 13th Annual
Int. Sym. on Computer Architecture, pages 434—442, June
1986.

[9

C. M. Flaig. VLSI mesh routing systems. Technical Report
5241:TR:87, California Institute of Technology, May 1987.

[10] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A, Gupta, and J. Hennessy. Memory consistency and event
ordering in scalable shared-memory multiptocessors. In
Proc. of the 17th Annual Int. Sym. on Computer Architec-

ture, June 1990,

S. R. Goldschmidt and H. Davis. Tango introduction and
tutorial. Technical Report CSL-TR & -410, Stanford Uni-
versity, January 1990. .

(1]

(12} P1596 Working Group. P1596/Part LA - SCI Cache Co-
herence Overview. Technical Report Revision 0.33, 1IEEE

Computer Society, November 1989,
(13

—

A. Gupta and W.-D. Weber. Reducing memory and traffic
requirernents for scalable directory-based cache coherence
schemes. Technical Report CSL-TR-90-417, Stanford Uni-
versity, March 1990,

(14]) B. Kleinman. DASH Protocol Verification, EE-391 Class
Project Report, December 1989,

(15) T. Knight. Architectures for anificial intelligence. In int.
Conf. on Computer Design, 1987,

(16] L. Lampont. How to make a multiprocessor computer that

correctly executes multiprocess programs. ISEE Trans. on

Computers, C-28(9):241-248, Septemiber 1979,

{17} D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, J. Hen-

nessy, M. Horowitz, and M. Lam. Design of the Stanford

DASH multiprocessor. Technical Report CSL-TR-89-403,

Stanford University, December 1989,

(18) B. O'Krafka and A. R. Newton. An empirical evaluation

of two memory-efficient directory methods. In Proc. of

the 17th Annual Int. Sym. on Computer Architecture, June

1990.

(19] M. S. Papamarcos and J. H. Patel. A low overhead coher-

ence solution for multiprocessors with private cache mem.

ories. In Proc. of the 11th Annual Int. Sym. on Computer

Architecture, pages 348-354, June 1984,

{20] C. K. Tang. Cache design in the tighdy coupled multipro-

cessor system. In AFIPS Conf. Proc., National Computer

Conf., NY, NY, pages 749-753, June 1976,




[21]) J. Willis. Cache coherence in systems with parallel com-
municaton channels & many processors. Technical Report
TR-88-013, Philips Laboratories - Briarcliff, March 1988,

(22]) D. A. Wood, G. A. Gibson, and R, H. Katz. Venfying a
mulitprocessor cache controller using random case gener-
ation. Technical Repont 89/490, University of California,
Berkeley, 1988,

(23] W.C. Yen, D. W. Yen, and K.-S. Fu. Data coherence prob-
lem in a multicache system. IEEE Trans. on Computers,
C-34(1):56-65, January 1985.

Appendix A: Coherence Transaction De-
tails
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Figure 7: Normal flow of read request bus transaction.
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Figure 8: Normal flow of a write-back request bus transaction.
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Abstract

This paper presents a theory that unifies many existing 100p transformations, including loop inter-
change or permutation, skewing, reversal, tiling, and combinations of these elementary transformations.
This theory provides the foundation for solving an open question in compilation for parallel machines:
Which loop transformations and, in what order, should be applied to achieve a particular goal, such as
maximizing parallelism or data ¥~ -a' y. This paper presents an efficient loop transformation algorithm
based on this theory to maxiinize ‘he degree of parallelism in a loop nest.

1 Introduction

Loop transformations, such as loop interchange, reversal, skewing and tiling (or subblocking)(2, 4, 18]
have been showis to be useful for two important goals: parallelism and efficient use of the memory
hierarchy. Previous work on loop transformations focused on the application of individual transformations;
when it is Jecgal to apply a transformation, and if the transformation directly contributes to a particular
goal. It remains an open question as to how to combine these transformations to optimize general loop
nests for a particular goal. This paper introduces a theory of loop transformations that answers this
question,

A technique commonly used in today’s parallelizing compilers is to decide a priori the order in
which the compiler shculd attempt to apply transformations. This technique is inadequate because the
eitectiveness of a given transformation often depends on the future transformations that can be applied.
Another proposed technique is to “generate and test”, that is, to apply all different possible combinations
of transformations. This “generate and test” approach is expensive. Difterently transformed versions
of the same program may trivially have the same behavior and so need not be explered. For example,
when vectorizing, the order of the outer loops is not significant. More importantly, generate and test
approaches cannot search the entire space of transformations that have potentially infinite instantiations.
Loop skewing is such a transformation, since a wavefront can travel in an infinite number of different
directions.

For loops whose data dependences are distance vectors, a more rigorous mathematical approach has
been proposed. In this approach, loop interchange, reversal, and skewing transformations are unified as
lincar transformations in the iteration space. This mathematical formulation of a loop has been used in the
study of gencrating systolic arrays and tiling[6, 7, 10, 11, 14, 15]. The restriction that data dependences
must be distance vectors excludes loops that contain any “serializing” loops. That is, in this notation,
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an n-dimensional iteration space trivially can be transformed to produce n — 1 parallel loops. We are
interested in representing general loop nests and transforming the loops to maximize the number of
parallel loops.

Our approach combines the rigor of the iteration space approach with the general program domain
of the vectorizing and concurrentizing compilers. Our dependence vectors can incorporate both distance
and direction information. The various transformations, intcrchange, reversal and skewing are unified as
linear transformations. Compound transformations are just another linear transformation. This unification
provides a general condition to determine if the code obtained via a compound transformation is legal,
as opposed to a specific test for each individual elementary transformation. This makes it possible to
search through the transformation space cfficicntly to achieve a given goal. Moreover, the relationships
and interactions between different transformations can be analyzed in this unified model. Similarly, this
model supports the derivation of the new loop bounds directly after a compound transformation. If loop
bounds were derived for every transformation, the final expressions derived may be more complex than
necessary.

Using this notation, we have developed algorithms for improving the parallelism and locality of a
loop nest via loop transformations. QOur parallelizing algorithm maximizes the degree of parallelism,
that is, the number of parallel loops, within a loop nest. By finding the maximum number of parallel
loops, multiple consecutive loops can be coalesced to form a single loop with all the iterations; this
facilitates load balancing and reduces synchronization overhead. The different degrees of parallelism
can be exploited directly by processors with different levels of parallelism, such as a multiprocessor
with superscalar nodes. Moreover, some of the loops may contain a small number of loop iterations.
Parallelizing only one loop may not fully exploit all the parallelism in the machine, The algorithm can
generate coarse-grain and/or fine-grain parallelism; the former is useful in multiprocessor organizations
and the latter is useful for vector machines and superscalar machines, machines that can execute multiple
instructions per cycle. It can generate code for machines that can use multiple levels of parallelism, such
as a multiprocessor with vector nodes.

We have also applied our repiesentation of transformations successfully to the problem of data locality.
All modem machine organizations, including uniprocessors, employ a memory hierarchy to speed up data
accesses; the memory hierarchy typically consists of registers, caches, primary memory and secondary
memory. To use this memory hierarchy efficiently, our locality optimization seek$ to maximize the reuse
of data that has been recently accessed. As the processor speed improves and the gap between processor
and memory speeds widens, data locality becomes more important. Even with very simple machine
models (for example, uniprocessors with data caches), complex compound loop transformations may be
necessary {8, 9, 13). The consideration of data locality makes it more important to be able to combine
primitive loop transformations in a systematic manner.

The lcop transformation algorithm has been implemented in our Stanford University parallelizing
compiler. The implementation has taken only about two man-months, demonstrating that the implemen-
tation is made simple by the theory.

This paper introduces our model of loop dependences and transformations. We describe how the
model facilitates the application of compound transformation, using parallelism as our target. The model
is important in that it enables the choice of an optimal transformation without an exhaustive search. Here
we will only present the parallelization algorithm; the proof that it finds the optimal transformation{16]
is outside the scope of this paper. The derivation of the optimal compound transformation consists of
two steps. The first step puts the loops into a canonical form, and the sccond step tailors it to specific




architectures. While the first step can be expensive in the worst case, we have developed an algorithm
that is feasible in practice. We apply a cheaper technique to handle as many loops as possible, and use
the more general and expensive technique only on the remaining loops. We expect to find the optimal
transformation in O(n3d) time for most programs, where n is the depth of the loop nests and d is the
number of dependence vectors, The second step of specializing the code for different granularities of
parallelism is straightforward and cheap. After deciding on the compound transformation to apply, the
code including the loop bounds is then modified.

The organization of the paper is to first present the representation of the loop nests and the modeling
of loop transformations. After establishing the notation, we illustrate the algorithm of parallelization by
stepping through a simple example and showing the output code for different machine organizations.
Finally, we describe a method for deriving the bounds of a loop after a compound transformation.

2 Representation

2.1 Program Representation

Our approach is applicable to perfectly nested loop nests; we assume that all optimizations have been
applied to create perfectly loop nests whenever possitle [1]. The upper and lower loop bounds must be
linear expressions of the loop indices and the loops are normaiizcd to have unit step sizes. In our model, a
loop nest of depth n corresponds to a finite convex polyhedron of itzration space Z ", bounded by the loop
bounds. Each iteration in the loop corresponds to a node in the polyhedron, and is identified by its index
vector § = (p1,P2,...,Dn)s Di is the loop index of the i loop in the nest, counting from the outermost to
innermost loop. In the sequential program, the iterations are therefore executed in lexicographic order of
their index vectors,

The scheduling constraints of the loop are represented as dependence vectors. The only dependences
of interest are loop carried dependences, and not loop independent dependences. It is not necessary to
classify the different dependence types such as control, anti- or output dependence, nor is the identity of
the related memory accesses of any significance.

A dependence vector in an n-nested loop is denoted by a vector d= (d1,dz,...,dy). Each component
d; is a range of integers, represented by

{d!',d¥},where d* € Z U {—00},d* € ZU {oo} and d* < d".
A single dependence vector represents a set of distance vectors, known as the distance vector set:
E(d) = {(e1,...,en)le; € ZAd* < & <-d¥).

Each distance vector defines a set of edges on pairs of nodes in the iteration space. We say that an
edge (i, ) exists if and only if 3¢ € £(d) for some dependence vector d, such that 3 = p; + €. The
dependence vectors thus define a partial order on the nodes in the iteration space, and any topological
ordering on the graph is a legal execution order, as all dependences in the loop are satisfied.

This notation allows us to represent both direction (3, 17] and distance information in a uniform
notation. For example, the Wolfe direction vector ' <* would be represented in our notation as d* = 1
and d¥ = oo, or [1,00] for short. If a dependence has a constant distance 6, then the dependence is
represented as [4, 6], and we use the shorthand 6 to represent that distance when the context is clear.




Finite ranges of distance components are represented by separate dependence vectors; that is, if d* # d¥,
then d* = —o0 or d¥ = oo or both.

The arithmetic and comparison operators over the domain of components are defined in a straightfor-
ward way to give useful meanings. For example, arithmetic operators are defined so that 2 +[~3,00] =
[~1,00]. We also utilize the multiplication of a distance by a scalar when taking dot products. We use
the straightforward definition that

_ ) [sa,sb], ifs2>0
sla,b] = { [sb,sa), otherwise

and s - 00 is oo for positive s, 0 if s is 0, and —oo for negative s, and likewise for a factor times —oc.
These definitions of addition and multiplication are conservative in that

& € £(dy) and & € £(dy) = f(&1,8) € £(f(d1, d2))

where f is a function that performs a combination of multiplications and additions on its operands. The
converse, that

g€ E(f(dy,dy)) = 38 € E(d)) A& € E(dy): f(1,&) = &,

is not necessarily true unless dy and d; are themselves distance vectors.

A component d is positive, written d > 0, if its minimum d# is a positive integer. It is non-negative,
written d > 0, if its minimum is non-negative. Likewise, d is negative or non-positive if its maximum
d¥ is negative or non-positive respectively. We use the notation ‘ +° as shorthand for {1,00], ‘-~ as
shorthand for [-o00, —1], and ‘=" as shorthand for [—o0, o],

Since the nodes are initially executed in lexicographic order, the scheduling constraints can be captured
by a set of lexicographically positive dependence vectors, A dependence vector d is lexicographically
positive, written d > 0, if 31: (d; >0 and ¥j < i: d; 2 0). A dependence vector d is lexicographically
non-negative, written d > 0, if it is lexicographicaily positive or its components are all non-negative. A
zero vector is one with all components equal to 0, written 0.

The procedure for extracting data dependence for this representation is similar to those used in previous
vectorizing and parallelizing compilers. The only difference is that we require the data dependences

of the original programs be represented as lexicographically positive data dependence vectors. For
cxample:

for i :=0to ndo
for j:=0to ndo
b = g);

The dependence vectors are {(0, ‘+'), (‘+', ‘¢')}. The lexicographical positive property of the dependences
is crucial in simplifying the modeling of loop transformations.

2.2 Transformation Representation

The scope of loop transformations addressed in this paper is restricted to transformations that manipulate
entire iterations and reorganize them within a loop nest. A loop transformation is defined by two map-
ping functions. The first is 2 one-to-one and onto mapping between a node in the convex polyhedron
representing the onginal loop nest and a node in another convex polyhedron in an itcration space of
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possibly diffcrent dimensions. The second function maps the original set of dependence vectors, such
that if a distance vector exists between a pair of nodes in the original loop, one also exists between the
corresponding nodes in the transformed loop. We note that there may rot be a one-to-one correspon-
dence between the dependence vectors of the two loops because infinite scts of distance vectors can be
represented only along the basis of the iteration space. This notation is chosen because it is efficient and
it captures most of the dependences found in real programs. We say that a transformation is valid if the
transformed dependence edges are acyclic, Traditionally, we say that it is legal to apply a transformation
to a loop nesi if the transformed code can be executed sequentially, or in lexicographic order of the
iteration space. We observe that if nodes in the transformed code are executed in lexicographic order, all
data dependences are satisfied if the transformed dependence vectors are lexicographically positive. This
obscrvation lcaus to a general definition of a legal transformation,

Defir.:tion 2.1 “ansformation is legal if the transformed dependence vectors are all iexicograph-
ical'y positive.
Muay of the loop transformations used in vectorizing and parallelizing compilers can be ger. ralized

as linear transformations, these include permutation, reversal and skewing. An important non-linear loop
transformation is tiling.

2.2.1 Linear Transfornations

A linear transformation 7', where T is a non-singular, unimodular matrix, maps iteration p (o iteration Tp
and dependence veetor d to iteration T'd. T is unimodular so that 1" ~! maps the transformed iteration p’
back 15 integral points in the original itzration space 5 = T ~!p/. We consider only n X n matrices, where

n is the nest depth. Three of the comnmen loop transformations, permutation, reversal and skewing, are
clementary transformations.

® Permutation: A permutation o on a loop nest transforms iteration (py,...,Pn) 0 (Poys... s Pon ).
This transformatior: can be expressed in matrix form as /,. the n X n identity matrix J with rows
permuted by o.

® Reversal: Reversal of loop : is represented by the identity matrix, but with the ith diagonal element
cqual to —1 rather than 1.

e Skewing: Skewing loop {, by an integer factor f with respect to loop I, [18) maps iteration

(pl,"- ,Pi—l,P{»Pi+la---an—laPJanHw--sPn)
to
(Pla--- sPiels Pis Pitty ooy Pj—1, Dy + fPiijH,--- apn)'

The transformation matrix thz! produces skewing is the identity matrix, but with the element ¢,
equal to f rather than zero. Since i < j, T must be lower triangular.

A compound iransformation can be synthesized from a sequence of primitives, and the effect of the
transformation is represented by the products of the various iransformation matrices for each primitive
transformation. Such a transformation is always unimodular. If the computation is to be executed

scquuntially in lexicographic order, then it must be the case that T'd - 0. This observation allows us to
devise a simple legality test for general linear transformations.




Theorem 2.1 (Linear Transformation Test). Let D be the set of dependence vectors of a__‘conlputation.
A linear transformation T is legal if T is non-singular and unimodular, and if Vd € D . Td >~ 0.

The proof is a simple consequence of the definition of legal and that if de Dthenée &(d) — TE > 0.
Since our arithmetic operators are only conscrvative for general dependence vectors, it is the case that
d € D then T~'(Td) = d only under the two common cases stated in Thcorem 2.2.

Theorem 2.2 Let D be the set of dependence vectors of @ computation. Suppose either of the following
is true:

1. all d € D are distance vectors, or

2. the linear transformation T can be synthesized exclusively from a combination of permutation and
loop reversals.

Then the linear transformation T is legal if and only ifvde D:Td 0.
As an ¢xample, let us consider the following code:

for i :=1to n do
for j ;=1 to n do
afi,jl := f(ali,jlafi+ 1,5 - 1]
end for
exd dor

This ~ude has the dependence (1,—1). Loop interchange is represented by T = [ (1) (1) } mapping

iteration (i,7) 10 (7,¢). However, T(1,—1)is (—1,1) which is lexicographically negative, rendering loop

interchange illegal on this loop. On the other hand, the transformation represented by T/ = [ (1) —(1) ]

is legal. Note that 0 -1} _1-1 0] 01

1 0| 01 10
interchange followed by a reversal of the outermost loop.

We say that a sct of adjacent loops ¢ through j is fully permutable if it is legal to reorder the loops in
all possible permutations. Full permutability is an important property that is exploited by transformations
for both parallelism and data locality.

] so the legal transformation can be considered an

Theorem 2.3 (Full Pcrmutability Test.) Loops i through j of a legal computation with dependence
vectors D are fully permutable if

V¥de D:((di,...,dic) =0V (Vi< k<j:ide 20))

222 Tiling

Tiling [17] is not a lincar transformation. When we tile loops ,...,j by sizes b;,...,b,, the iteration
space gains j — : + 1 new dimensions, and the iteration

(P1yee s Pic1yPise o PjsPy4ly ey Pn)




is mapped to
(Prye.yPi-11 PG> - - an,',Pf',--» ,P_,,"ijH veosPn)

where p) = | px/bi}, and p} = p; mod by, foreach 1 < k < 5.
Define the function

0 ifd=0
s(d) = ‘+' if d # 0 and d non-negative
T =" if d # 0 and d non-positive
‘' otherwise,
A dependence veetor (dy,. .., dy,) is transformed into up to 2/-+! new vectors of the form

(dl,-.. 7di—l,d:'a~ . ,df,,d" . 1d_’;',adj+lw~~ adn)a
where for each i < k < 7, either dj, = s(di) and d = ‘#’ or d = 0 and d}} = d, except that if dp =0
then dj = 0 and ¢} =
From examination of the above, it is clear that if loops ¢ through j of a legal computation are fully
permutable, then they are also tilable. Since the resulting dependence vectors are independent of the size
of the tile, it is not necessary to determine that size at loop transformation time.

3 The Parallelizing Algorithm

Tterations of a loop can execute in parallel if and only if there are no dependences carried by that loop
Suppose the loop nest (py,...,pr) can be executed correctly in lexicographic order. The loop p; of a
legal sequential loop nest is parallelizable if and only if for all dependence vectors (di,...,di—1) > 0 or
d, = 0. Such a loop is called a DOALL loop. To maximize the degree of parallelism is to transform the
loop nest to maximize the number of loops that satisfy this property.

We divide the problem of parallelization into two parts. We first transform the original loop nest into
nests of largest fully permutable loop nests. This is the canonical form from which maximum degrees
of coarse and fine grain parallelism can be obtained. Then different techniques are applied to obtain
the granularities of parallelistn appropriate for the target machine. We illustrate this algorithm using the
following example:

for i:=I1tondo
for j:= 1to ndo
for k :=1to ndo
(a[i,k],b{t,k]) = Ka[ik], afi+1,k-1], bliy,k], blij.k-1]);

The loop body above is represented by a cube in a three-dimensional iteration space with sides of length
n. Discarding {0,0,0), the dependence vectors are,

D = {(0,'+',0),(1,*%’,-1),(0,0,1)}.

None of the three loops in the source program can be parallelized as it stands; however, there is one
degree of parallclisin that can be exploited at either a coarse or fine grain level.

In the description below, we will show the code resulted from each step of the transformation process.
In reality, code is gencrated once only at the end of the entire algorithm.




3.1 Canonical Form

A loop is in canonical form for parallelization if it contains the maximally outermost fully permutable
loops under linear transformations. Once in canonical {orm, the loops can be translated mechanically to
suit a particular parallel architecture.

For the example above, the algorithm permutes the j and k loops, and skews the k loop with respect to
loop 1 by a factor of 1, resulting in the code below:

for i := 1to ndo
for k ;= i+] 10 i+ndo
for j:= Ito ndo
(a[i,k-i],blij.k-i]) := fa[ik-i], afi+1,k-i-1], bli,j,k-i], blij,k-i-1]);

The transformation matrix T and the transformed dependences D are

100 1 00 100
T=1110 001|=]101
001 010 010

and
D = {(0,0,'+"),(1,0,'¢"),(0,1,0)}.

The transformation is legal since the dependences remain lexicographically positive. The first two loops
form one set of fully permutable loop nest, since intercnanging loops ¢ and j leaves the dependences
lexicographically positive. The loop k is in a (degenerate) set of permutable loops by itself,

We will briefly outline the algorithm that is used in transforming the code into canonical form[16].
The algorithm constructs the final set of loops incrementally starting with the outermost subnest and
working inwards. The same procedure of finding the currently outermost, largest fully permutable loop
nest is applied recursively. For each subnest, the algorithm adds loops to it one at 2 time. A loop may
first be reversed and/or skewed with respect to outer loops before it can be permuted to be included into
the current subnest. This pemmute-reverse-skew does not always deliver the optimal result. However, it is
optimal in common cases such as when the nest contains less than four loops, or when all the dependences
in the original program are distance vectors. In those cases where this algorithm cannot order all the
loop, we apply general 2-D transformations{14, 15] on pairs of loops to improve parallelism. With this
transformation, our algorithm is optimal for loops nests of depth four or less in O(n3d) where n is the
loop nest depth and d is the number of dependences[16]).

3.2 Targeting for Specific Architectures

In the following, we first show that the loops in the canonical format can be trivially transformed to
give coarsest granularity of parallelism, We then show these loops can be transformed to give the same
degree of fine-grain parallelism, suitable for superscalar and VLIW architectures. We then retum to the
multiprocessor architecture, and show how the same degree of parallelism can be obtained via lower
synchronization cost, and how both fine- and coarse-grain paralielism can be produced.




3.2.1 Coarse Grain Parallelism

A nest of n fully perrnutable loops can be transformed to code containing at least n — 1 degrees of
parallelism [11]. In the degenerate case when no dependences are carried by these n loops, the degree
of parallelism is n. Otherwise, n — 1 loops can be obtained by skewing the innermost loop in the fully
permutable nest by each of the other loops and moving the innemost loop to the outermost position.
For example, the two-loop fully permutable set in the example above can be transformed to provide one
level of parallelism:

for k := 3to 3*ndo .
doall i := max(1,[(k-n)/2}) to min(n,|(k-1)/2]) do
for j:= I1to nde
(a[1,k-2%),bliy,k-2*1]) := fa[i,k-2%], a[i+1,k-2%-1], bfi,j,k-2%i], bfij.k-2*-1]);
The transformation matrix 7" for this phase of transformation, and the transformed dependences D are

01 0]f[1t 00
T=1100 1 1 0] =
0 01 0 01

10
00
] 01

D it s

and
D = {(0,0,+"),(1,1,"+"),(1,0,0)}.

Applying this skew and interchange transformation to all the fully permutable loop nests will produce
a loop nest with the maximum degree of parallelism. Moreover, the parallelism is contained in the
outermost possible loops, and thus of the coarsest granularity possible[16].

3.2.2 Fine Grain Parallelism

If the target is a superscalar or VLIW machine, it is desirable that the parallel loop be innermost. If loop m
is a parallel loop and m < n, then loop i can be permuted into the innermost loop via the transformation
I,, where ¢ = 1,...,m-1,m+1,...,n,m It is obvious that originally lexicographically positive
dependences remain so if loop m is a parallel loop. Thus if there is a DOALL anywhere in the loop
nest, we can create fine-grain parallelism for a machine that can use it. In fact, any number of DOALL
loops can be permuted to be inner loops. This may be useful if code scheduling techniques such as
software pipelining[12] are used. The overhead of starting and finishing a parallel loop is further reduced
by coalescing the multiple DOALL loops. Since the iransformation in Section 3.2.1 creates the largest
possible number of DOALL loops, the maximum degree of fine-grain parallelism can be obtained by
simply moving these DOALL loops innermost.

3.2.3 Reducing Global Barriers

Whenever a DOALL loop is nested within a non-DOALL loop, all processors must be synchronized
at the cnd of each DOALL loop with a barrier. We can reduce the synchronization cost by tiling [17].
In the following, we show two variations,

After transforming the code to obtain the outermost fully-permutable locp nests, we do not skew
and permute as suggested in Section 3.2,1. Instead, starting with the canonical form of the nest from

Scction 3.1, we tile the outcrmost fully-permutable nest. Using our simple example again, the tiled code
becomes:




1 2 [ 3 4 5
Y
2 37T 4 5 6
3 4 5 6 7
4 5 6 7 8
]

Figure 1: Order of DOALLSs in tiled 2-dimensional iteration space

for ii ;= 1to nby Bdo
for kk := ii+1to if+nby B do
for [ := ii to min(ii+B, n) do
for k := max(kk,i+1) to min(kk+B, n) do
for j:= 1to ndo
(a[ik-i]blijk-i]) := fafik-i}, afi+1,k-i-1], bfijk-i}, blijk-i-1]);

The outer loop nests obtained by tiling (/i and kk in the example) can be skewed and permuted to run in
parallel just as the original loops. The advantage is that the synchronization cost is reduced by the block
size. The ¢ and k dimensions are plotied in Figure 1. Tiles are numbered by the index of their outer
loops so that tiles with the same number are executed in parallel. Tiles numbered n cannot execute until
all those numbered n — 1 have executed.

Tiling has two other advantages. First, within each tile, fine-grain parallelism can easily be obtained
by skewing the loops within the tile and moving the DOALL loop innermost. Second, tiling can improve
data locality if there is data reuse across several loops {8).

To further reduce the synchronization cost, we can apply the concept of a DOACROSS loop to
the tile level [5] [17]. After tiling, instead of skewing the loops statically to form DOALL loops, the
computation is allowed to skew dynamically by explicit synchronization between data dependent tiles.
In the DOALL loop approach , tiles of each level must be completed before the processors may go on to
the next, requiring a global barrier synchronization. In the DOACROSS model, each tile can potentially
execute as soon as it is legal to do so. That is, referring to Figure 1, those numbered n can execute
as soon as their neighbors that are numbered n — 1 have executed. This ordering can be enforced by
local synchronization. Furthermore, different parts of the wavefront may proceed at different rates as
determined dynamically by the execution times of the different tiles. In contrast, the machine must wait
for the slowest processor at every level with the DOALL method.

3.3 Summary

We have outlined our two-step algorithm in finding parallelism for the different inachines. The first is
to transform the code into nests of maximal fully permutable loop nests. The second is to tailor the
code to specific architeciures. The step of transforming the loop nests into nests of fully permutable

loops can be quite expensive, whereas the transformation of targeting to different machine architectures
is straightforward.
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4 Determining Loop Bounds

In this section we present a method o determine the 1oop bounds after a scries of skews, permutations,
reversals, general two dimensional transformations and tilings.

4.1 Scope
The class of loops that the loop bound calculation can handle is of the form
for I :=max(L!, L,...) to min(U},U?,...) do

where
i—-1
L = [(1,".0 +2 l.".uk) /If-’,.-]
k=1
1—1
Uvg = [(u:’:' + Zuf"klk) /l&-J
k=1

and all [?, and u{", are known constants, except possibly for 25 and vy, which must still be invariant
in the loop nest. (If a ceiling occurs where we need a floor it is a simple matter to adjust {7 and u?,
and replace the ceiling with the floor, and likewise if a floor occurs where we need a ceiling.) If any
loop increments are not one, then they must first be made so, for example via 100p normalization. If the
bounds are not of the proper form, then the given loop cannot be involved in any transformations, and
the loop nest is effectively divided into two: those outside the loop and those nested in the loop.

Loop skewing followed by permutation can easily produce bounds of this complexity, with minima,
maxima, floors and ceilings. Since we wish to be able 10 take permuted and skewed loops and perform
further transformations, we need full generality.

4.2 Determining the Bounds after Skewing or Reversal

Loop reversal can be implemented by negating the step and exchanging the upper and lower bounds, and
applying loop nomalization to make the step again unity, It is also easy to determine the bounds after
loop skewing [18]. Moreover, if the bounds were previously in the class of bounds we can transform,
then they remain so after the loop bound transformations for skewing and reversal,

4.3 Determining the Bounds after Permutation

We outline our method for determining the bounds of a loop nest after permutation by ¢. We explain the

general method and demonstrate it by permuting the following loop nest to make k the outermost loop
and 1 the inncrmost loop.

for i .=1to n; do
for j :=2ito n, do
for k :=2¢+ j — 1 to min(j,nx) do
S




The inequalities extracted from the above loop nests are:

1>1 i< ny
j>2i i<
k>224+7-1 k<j k<ny

From these inequalities, we can find the maximum and minimum possible values of each loop index.
This can be easily done by substituting the values obtained from the outermost loop to innermost. The
minimum and maximum values are:

121 1< n,
jZZXl=2 anJ'
k>22x142-1=3 k< min(nj,nk).

We define for loop i
min(/;) = max (L]%)
o

where

i-1
L* = [(1."’,0 +2 0% .'.‘Z) /lﬁ.-.l
k=1

and _
eo ) min(ly), sgn() = sgn(l2y)
sk max(/y), otherwise.

Similar formulas hold for max(I,).

The inequalities can be expressed in a more uniform notation. We first note that [; > [ f(...)] if and
only if I; > f(...) since I; is an integer. Thus in the inequality I; > L& we can remove the ceiling in
the LY. We can then move the I; term to the same side as the summation and multiply the inequality
through by 7, to get

1-1
& = I8L+ Y 1% I < 0,if 17, > 0.
k=1
The scnse of the inequality is reversed if (¥, < 0. We can perform the same manipulations of the upper
bound expressions. We can also multiply through by —1 when the test is >. Again we can perform the
same manipulations for the upper bound incqualities. This results in a series of inequalities of the form

1
efo+ Y el <0
k=1

where the e, are compile time constants and e is a loop nest invariant.

To determine the loop bounds for loop index ¢ after permutation by o, we first rewrite each inequality
containing ¢, producing a series of inequalities + < f(...) and ¢ > f(...). Each incquality of the form
i < f(...) contributes to the upper bound. If there is more than one such expression, then the minimum
of the expressions is the upper bound. Likewise, each inequality of the form i > f(...) contributes to the
lower bound, and the maximum of the right hand sides is taken if there is more than one. Each inequality
of the form @ > f(7) 15 considered twice. Suppose loop j is placed outside of 1, the expression does not
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need to be changed since the loop bound of ¢ can be a function of the outer index j. As for loop index
J, we must substitute ¢ by its minimum or maximum, whichever minimizes f. A similar procedure is
applied to the upper loop bounds,

We demonstrate this method for the above example. Substituting the minimum and maximum of 3
and J into bounds of loop &, and those of i into bounds of loop j, we obiain:

k>22i+7-1 k<j k<mn

k>3 k<n; k<n

7> 21 k<j j<n; k>221+5-1

i 22 j2k j<n; j<k-=2i-1

P2 ick j<n; j<k-2-1=k-3

i2>1 i<n j<k-2i-1

ix1 ign i<(k-j-1)/2=ig|(k-j-1)/2]

The transformed bounds are the following:

for k£ ;=3 to min(ng, n;) do
for j := k to min(n;,k - 3) do
for i := 1 to min(n,, {(k - j -~ 1)/2]) do
S:

The loop bounds produced as a result of permutation again belong to the class discussed in Section 4.1,
so that our methods can calculate the loop bounds after further transformation of these loops.

4.4 Determining the Bounds for General 2-D Loop Transformations

The process for determining the bounds after a general 2-D transformaiion T is similar to that for
permutation.  First, we produce the set of inequalities relating the original loop indices i and j, and
calculate the maxima and minima for the indices. Transformation T maps 1 and j to a linear combination
of + and j'. We replace all references to ¢ and j by the equivalent linear combinations of i’ and 7' in
the inequalities. The inequalitics remain lincar. We then apply the same transformation T to the maxima
and minima of ¢ and j to produce those for i/ and j/. Once these are known, the loops are placed in the
desired order and the bounds are calculated, just as in the permutation case.

4.5 Determining the Bounds after Tiling

It has been suggested that strip-mining and interchanging be applied to determine the bounds of a
tiled loop. However, it is not straightforward when the loop bounds are not rectangular [18]. A more
direct method is as follows. When tiling, we partition the iteration space, whatever the shape of the
bounds, as in Figure 2. Each rectangle represents a computation performed by a tilc, some tiles may
contain little or even no work.

We replace the loop nest to be tiled, (p;,...,p;), with (pi,...,p},pi....,p,). The lower bound on
the pi loops, 1 < k < j, is the maximum of the original lower bound and pi; similarly, the upper bound
is thc minimum of thc original upper bound and pf 4 Sk 1, where Sk is the size of the tile in the &
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Figure 2: Tiling a trapezoidal loop (2-D)

loop. For loops p,, the lower and upper bounds are simply the minimum and maximum values of loop
index k. As shown in Figure 2, some of these tiles are empty. The time wasted in determining that the
tile is empty should be negligible when compared to the execution of the large number of non-empty
tiles in the loop. The p} loops step by Si.

Applying these methods to the permuted example loop nest, we can tile to get the following: (Note
that &', j’ and ¢’ can be permuted at will.)

for k' ;=3 to min(n;, nx) by T) do
for j' :=2 to n, by T; do
for i/ ;=1 to n; by T; do
for k :=max(3, k') to min(ng,n;, k' + Tx — 1) do
for j = max(k, j’') to min(n;, k- 3,5+ T; — 1) do
for i :=max(1,%) to min(n,, |(k— 7~ 1)/2],¢'+ T; — 1) do
S,'

After tiling, the loops within the tiles are again in the form we need to perform further permutation,
skewing and so on. This property is very useful for tiling for coarse-grain parallelism and then skewing
and permuting to create fine-grain DOALL parallelism. The loops controlling the tile have a step chosen
by the compiler and therefore known at compile time. However, it may not be possible to normalize the
loop in such a way that those bounds will still be in the class we need to perform further permutation
with loops controlling these tile loops.

5 Conclusions

We have developed a theory that unifies various previously proposed loop transformations, and enables the
application of compound transformations. This theory is general enough to encompass both parallelizable
and non-parallelizable loops. Previous approaches focus on either specific elementary transformations on
general loop nest representation, or general linear transformations on a subclass of loops, namely, the set
of loops whose dependences can be represented as a set of distance vectors. This uniform notation is
necessary to allow reasoning about the space of all transformations to reduce the search for the optimal
transformation,

We have applied this theory to the problem of maximizing the degree of parallelism in loop nests.
This paper proposes a practical approach to maximize the degree of parallelism for varous diffcrent
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machine architectures via gencral linear transformations. There are many different possible sequences
of lincar transformations that can be applied and the algorithm to find the optimal can potentially be
expensive. We reduce the problem of maximizing parallelism for different architectures to finding a
series of coarsest fully permutable loop nests. By showing that it is easy to transform the loops in this
canonical form to suit different architectures, we unify all these different parallelization problems into
one. This problem formulation reduces the general parallelization problem into the problem of finding
the outermost, largest, fully permutable nest, thus significantly reducing the search space,

We have also applied this theory to the problem of finding loop bounds after transformation. By
considering the loop nest as a whole, the general algorithm for determining loop bounds is simplified.
For cxample, in the case of tiling there is no need to have different versions of the transformation for
constant loop bounds and for “triangular loops” — the bounds can be determined in a uniform manner.
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